

# Solenoid Valve Type 3963

# **General notes**

The Type 3963 Solenoid Valves ensure a high level of operational reliability and fast response times for controlling pneumatic actuators in hazardous areas.

Intrinsically safe, low-power binary signals issued by automation or fieldbus systems can be used for controlling purposes.

The Type 3963 Solenoid Valves offer a variety of switching functions, flow rates and connections for all desired applications (Fig. 1).

Special features of the Type 3963 Solenoid Valves include:

#### General

- Safety Integrity Level SIL 4 according to IEC 61508 (optional)
- Safety function for use on control valves (optional)
- Corrosion-resistant enclosure with degree of protection IP 54 or IP 65 for applications in humid, aggressive environments
- Versions compatible with paint (on request)
- Service life more than 20 millions switching cycles
- Ambient temperature range -20 to  $+80^{\circ}$ C or -45 to  $+80^{\circ}$ C
- Rail mounting, wall mounting or mounting with pipe fittings
- Attachment to linear actuators with NAMUR rib according to IEC 60534-6-1 or to rotary actuators with NAMUR interface according to VDI/VDE 3845

#### Pilot valve

- E/P binary converter with flapper/nozzle assembly
- Nominal signal 6/12/24 V DC or 24/48/115/230 V AC
- Type of protection II 2 G EEx ia IIC T6 or II 3 G EEx nA II T6 according to ATEX, additional certifications according to CSA, FM, GOST and NEPSI
- Power consumption 6 to 27 mW or 0.04 to 0.46 VA, depending on the nominal signal
- Manual override as pushbutton or pushbutton switch (optional)
- Air supply 1.4 to 6 bar
- Electrical connection using a cable gland M 20 × 1.5 to terminals or using a plug-type connector
- Cable break protection device (accessory)

#### **Booster valve**

- Diaphragm with return spring or piston, single or double actuated
- 3/2, 5/2, 5/3 or 6/2-way function
- Exhaust air return (optional)
- K<sub>vs</sub> 0.16 to 4.3
- Supply air/exhaust air restrictors for adjusting different closing and opening times in a ratio of 1:15 (optional)
- Threaded connection G (NPT)  $\frac{1}{4}$  or  $\frac{1}{2}$
- NAMUR interface <sup>1</sup>/<sub>4</sub>" or <sup>1</sup>/<sub>2</sub>"



5/2-way solenoid valve, single actuated with spring return mechanism,  $K_{vs}$  0.16, connection G  $^{1}\!/_{4}$ 



3/2-way solenoid valve,

single actuated with spring return mechanism,  $K_{vs}$  4.3, connection G  $^{1}\!/_{4}$ 



5/2-way solenoid valve, double actuated with two locking positions,  $K_{vs}$  1.4, connection G  $^{1}\!/_{4}/NAMUR$ 

Fig. 1

# Versions with threaded connection

#### Type 3963 Solenoid Valves for continuous and on-off actuators

Fig. 3

81-

82

Solenoid Valve

(see Fig. 3)

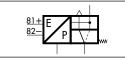
• K<sub>vs</sub> 0.32

• 3/2-way function

Connection G (NPT) <sup>1</sup>/<sub>4</sub>

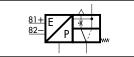
Safety function SIL 4/TÜV

• Attachment to linear actuators with


NAMUR rib, e. g. SAMSON's Type 3271

Type 3963-XXX0022XXXXXXX

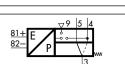
<sub>▽</sub>9 |5 |4


3





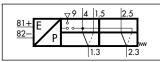
#### Type 3963-XXX003240XXXXX Solenoid Valve


- 3/2-way function
- K<sub>vs</sub> 0.32
- Safety function SIL 4/TÜV
- Attachment via a connection block to SAMSON's Type 3277 Linear Actuator with SAMSON's Type 3730, 3766, 3767 or 378X Positioner (see Fig. 2)



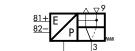
## Type 3963-XXX013141XXXX0

- Solenoid Valve
- 3/2-way function Adjustable exhaust air restrictor
- K<sub>vs</sub> 0.16
- Attachment via a connection block to SAMSON's Type 3277 Linear Actuator with SAMSON's Type 3730, 3766, 3767 or 378X Positioner (see Fig. 2)



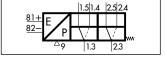



## Type 3963-XXX0012XXXXXX


- Solenoid Valve
- 3/2-way function
- K<sub>vs</sub> 0.32
- Connection G (NPT) <sup>1</sup>/<sub>4</sub>
- Safety function SIL 4/TÜV • Rail mounting, wall mounting or
- mounting with pipe fittings to linear actuators, e. g. SAMSON's Type 3271 or 3277



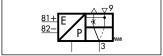



### Type 3963-XXX1011XXXXXX0

- Solenoid Valve
- 5/2-way function
- K<sub>vs</sub> 0.16
- Connection G (NPT) 1/4 • Rail mounting or wall mounting



#### Type 3963-XXX0011X0XXXXX


- Solenoid Valve
- 3/2-way function
- K<sub>vs</sub> 0.16 Connection G (NPT) <sup>1</sup>/<sub>4</sub>
- Rail mounting, wall mounting or mounting with pipe fittings to on-off linear actuators, e. g. SAMSON's Type 3271 or 3277

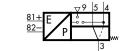


#### Type 3963-XXX8011XXXXXX0

# Solenoid Valve

- 6/2-way function
- K<sub>vs</sub> 0.16 Connection G (NPT) <sup>1</sup>/<sub>4</sub>
- Rail mounting or wall mounting

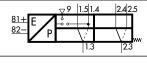



## Type 3963-XXX0111X0XXXX0

- Solenoid Valve • 3/2-way function
- Adjustable exhaust air restrictor
- K<sub>vs</sub> 0.16
- Connection G (NPT) 1/4
- Rail mounting, wall mounting or mounting with pipe fittings to on-off linear actuators, e. g. SAMSON's Types 3271 or 3277

## Versions with threaded connection (continued from page 2)

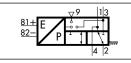
Type 3963 Solenoid Valves for continuous and on-off actuators






#### Type 3963-XXX0014XXXXXXX Solenoid Valve

- 3/2-way function
- K<sub>vs</sub> 4.3
- Connection G (NPT) <sup>1</sup>/<sub>2</sub>
- Safety function SIL 4/TÜV
- Wall mounting or mounting with pipe fittings to linear actuators, e. g. SAMSON's Type 3271 or 3277

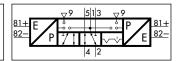





#### Type 3963-XXX1014XXXXXX0 Solenoid Valve

- 5/2-way function
- K<sub>vs</sub> 4.3
- Connection G (NPT) <sup>1</sup>/<sub>2</sub>
- Wall mounting or mounting with pipe fittings






#### Type 3963-XXX0013XXXXXXX Solenoid Valve

- 3/2-way function
- Exhaust air return
- K<sub>vs</sub> 1.4
- Connection G (NPT) 1/4
- Safety function TÜV
- Wall mounting or mounting with pipe fittings to linear actuators, e. g. SAMSON's Type 3271 or 3277

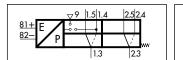
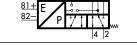



Fig. 9



#### Type 3963-XXX2013XXXXXXX Solenoid Valve

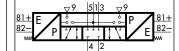

- 5/2-way function
- with two locking positions • K<sub>vs</sub> 1.4
- Connection G (NPT) <sup>1</sup>/<sub>4</sub>
- Safety function TÜV
- Wall mounting or mounting with pipe fittinas



#### Type 3963-XXX8014XXXXX0

Solenoid Valve

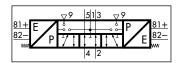
- 6/2-way function
- K<sub>vs</sub> 4.3
- Connection G (NPT) <sup>1</sup>/<sub>2</sub>
- Wall mounting or mounting with pipe fittings




513

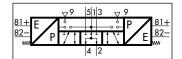
#### Type 3963-XXX1013XXXXXX0

# Solenoid Valve


- 5/2-way function
- K<sub>vs</sub> 1.4
- Connection G (NPT) <sup>1</sup>/<sub>4</sub>
  Wall mounting or mounting with pipe fittings to linear actuators, e. g. SAMSON's Type 3271 or 3277



#### Type 3963-XXX3013XXXXXX0 Solenoid Valve


#### • 5/3-way function

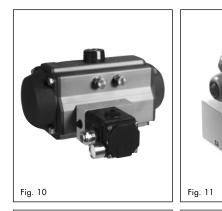
- with spring-centered mid-position (connections 2 and 4 closed)
- K<sub>vs</sub> 1.4
- Connection G (NPT) <sup>1</sup>/<sub>4</sub>
- Wall mounting or mounting with pipe fittings

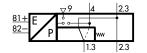


#### Solenoid Valve

- Type 3963-XXX5013XXXXXXX
- 5/3-way function with spring-centered mid-position
- (connections 2 and 4 vented)
- K<sub>vs</sub> 1.4
- Connection G (NPT) <sup>1</sup>/<sub>4</sub>
- Safety function TÜV
- Wall mounting or mounting with pipe fittings




Type 3963-XXX4013XXXXXX0 Solenoid Valves


- 5/3-way function
- with spring-centered mid-position (connections 2 and 4 to air supply)
- K<sub>vs</sub> 1.4 Connection G (NPT) <sup>1</sup>/<sub>4</sub>
- Wall mounting or mounting with pipe fittings

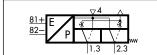
- 3 -

# Versions with NAMUR interface

#### Type 3963 Solenoid Valves for continuous and on-off actuators





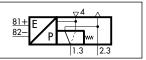

#### Type 3963-XXX0002XXXXXXX

- Solenoid Valve
- 3/2-way function
- Exhaust air return
- K<sub>vs</sub> 0.32
- Connection G (NPT) <sup>1</sup>/<sub>4</sub>/NAMUR Safety function SIL 4/TÜV
- Mounting to rotary actuators with NAMUR interface, optionally with a positioner (see Fig. 10)

|              | ⊽4               | Δ   | _  |
|--------------|------------------|-----|----|
| 81+ E        | ]                |     |    |
| <u>82-</u> P | $\sum_{i=1}^{n}$ | λ,  | ww |
|              | 1.3              | 2.3 |    |

#### Type 3963-XXX1001XXXXXX0

- Solenoid Valve
- 5/2-way function
- K<sub>vs</sub> 0.16
- Connection G (NPT) <sup>1</sup>/<sub>4</sub>/NAMUR
- Mounting to on-off rotary actuators with NAMUR interface (see Fig. 10)




#### Type 3963-XXX1201X0XXXX0 Solenoid Valve

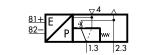
- 5/2-way function
- Two adjustable exhaust air restrictors
- K<sub>vs</sub> 0.16
- Connection G (NPT) 1/4/NAMUR
- Mounting to on-off rotary actuators with NAMUR interface (see Fig. 10)





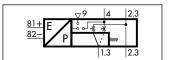


#### Type 3963-XXX0001X0XXXXX


- Solenoid Valve • 3/2-way function
- Exhaust air return
- K<sub>vs</sub> 0.16

1.5 1.4 2.5 2.4

2.3


1.3

- Connection G (NPT) 1/4/NAMUR
- Safety function SIL 4/TÜV Safety function SiL 4/10V
   Mounting to on-off rotary actuators with NAMUR interface or with adapter plate (order no. 1400-6751) to linear actuators with NAMUR rib, e.g. SAMSON's Type 3241-1 (see Fig. 12)



#### Type 3963-XXX0101X0XXXX0

- Solenoid Valve
- 3/2-way function
- Exhaust air return
- Adjustable exhaust air restrictor • K<sub>vs</sub> 0.16
- Connection G (NPT) 1/4/NAMUR
- Mounting to on-off rotary actuators with NAMUR interface or with adapter plate (order no. 1400-6751) to linear actuators with NAMUR rib, e. g. SAMSON's Type 3241-1 (see Fig. 12)



#### Type 3963-XXX0301XXXXXX0

- Solenoid Valve
- 3/2-way function
  Adjustable supply air/exhaust air
- restrictors
- K<sub>vs</sub> 0.16
- Connection G (NPT) <sup>1</sup>/<sub>4</sub>/NAMUR
- Mounting to on-off rotary actuators with NAMUR interface or with adapter plate (order no. 1400-6751) to linear actuators with NAMUR rib, e. g. SAMSON's Type 3241-1 (see Fig. 12)

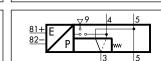
81+

82

Solenoid Valve

• K<sub>vs</sub> 0.16

• 6/2-way function


NAMUR interface

P

Type 3963-XXX8001XXXXXX0

Connection G (NPT) <sup>1</sup>/<sub>4</sub>/NAMUR

Mounting to rotary actuators with



## Type 3963-XXX0007XXXXXXX

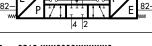
- Solenoid Valve
- 3/2-way function
- Exhaust air return
- K<sub>vs</sub> 2.0
- Connection G (NPT) <sup>1</sup>/<sub>4</sub>, <sup>1</sup>/<sub>2</sub>/NAMUR <sup>1</sup>/<sub>4</sub>" • Safety function SIL 4/TÜV
- Mounting to on-off rotary actuators with NAMUR interface <sup>1</sup>/<sub>8</sub>" or <sup>1</sup>/<sub>4</sub>" or with adapter plate (order no. 1400-6751) to linear actuators with NAMUR rib

## Versions with NAMUR interface (continued from page 4)

Type 3963 Solenoid Valves for continuous and on-off actuators



Type 3963-XXX1003XXXXXX0 Solenoid Valve


• 5/2-way function

<u>81+</u>

<u>82</u>

- K<sub>vs</sub> 1.4 • Connection G (NPT) 1/4/NAMUR
- Mounting to rotary actuators with NAMUR interface or with adapter plate (order no. 1400-6751) to linear actuators with NAMUR rib

1 2



81-

#### Type 3963-XXX3003XXXXXX0

- Solenoid Valve
- 5/3-way function with spring-centered mid-position (connections 2 and 4 closed)
- K<sub>vs</sub> 1.4

82

Solenoid Valve

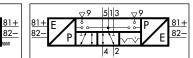
• K<sub>vs</sub> 1.4

• 5/3-way function

• Connection G (NPT) 1/4/NAMUR Mounting to rotary actuators with NAMUR interface

,9

Type 3963-XXX5003XXXXXXX


5113

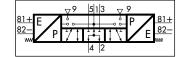
4 2

**⊽**9

F






#### Type 3963-XXX2006XXXXXX0 Solenoid Valve

- 5/2-way function
- with two locking positions
- K<sub>vs</sub> 2.9
- Connection G (NPT) <sup>1</sup>/<sub>2</sub>/NAMUR <sup>1</sup>/<sub>2</sub>"
- Mounting to rotary actuators with NAMUR interface <sup>3</sup>/<sub>8</sub>" or <sup>1</sup>/<sub>2</sub>"
- Connection G (NPT) <sup>1</sup>/<sub>4</sub>/NAMUR Safety function TÜV

(connections 2 and 4 vented)

with spring-centered mid-position

Mounting to rotary actuators with NAMUR interface



#### Type 3963-XXX4003XXXXXX0

- Solenoid Valve
- 5/3-way function with spring-centered mid-position (connections 2 and 4 to air supply)
- K<sub>vs</sub> 1.4
- Connection G (NPT) <sup>1</sup>/<sub>4</sub>/NAMUR
- Mounting to rotary actuators with NAMUR interface

T 3963 EN

# Function

### Solenoid valves with single actuation

The solenoid valves consist of an E/P binary converter B with manual override B (optional) and a single actuated booster valve C with return spring (Fig. 18).

The booster valve © supplies the E/P binary converter A internally with the supply air (delivery state). Rotating a flat gasket allows the E/P binary converter A to be supplied with external air supply via connection 9.

The pressure reducer (5) reduces the air supply pressure to 1.4 bar.

In the normal position the flapper ② is lifted off the outlet nozzle ① by the spring ③. As a result, a pressure lower than the switchoff pressure of the booster valve © builds up in the pressure divider that consists of the restriction ⑥ and the outlet nozzle ①.

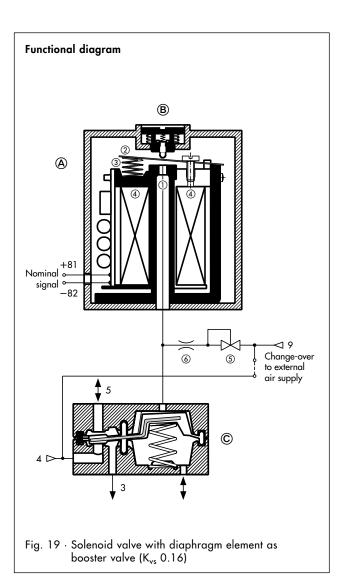
When the solenoid ④ is energized by an electrical binary signal, the outlet nozzle ① is closed by the flapper ② against the force of the spring ③. As a result, the pressure in the pressure divider rises above the switch-on pressure of the booster valve ©, thus switching it to the operating position.

After de-energizing the electrical binary signal, the booster valve © will be switched to the normal position by a return spring.

# Solenoid valves with double actuation

The solenoid valves consist of two E/P binary converters B with manual override B (optional) and a double-actuated booster valve C with two locking positions or spring-centered mid-position.

The booster valve © supplies the E/P binary converters @ internally with the supply air (delivery state). Rotating two flat gaskets allows the E/P binary converters @ to be supplied with external air supply via connections 9.


The pressure reducer (5) reduces the air supply pressure to 1.4 bar.

In the normal position, the flapper (2) is lifted off the outlet nozzle (1) by the spring (3). As a result, a pressure lower than the switchoff pressure of the booster valve (2) builds up in the pressure divider that consists of a restriction (6) and an outlet nozzle (1).

When the solenoid is energized by an electrical binary signal, the outlet nozzle ① is closed by the flapper ② against the force of the spring ③. As a result, the pressure in the pressure divider rises above the switch-on pressure of the booster valve ©, thus switching it to the operating position.

After de-energizing the electrical binary signal, the operating position of the detented booster valve © will be retained until a reverse signal is received. After de-energizing the electrical binary signal the spring-centered booster valve © will be switched to the mid-position by a return spring.

Energizing both E/P binary converters (A) at the same time must be prevented by appropriate electrical control.



# Technical data

| General data of the solen | oid valves                                                                                                                                                              |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Construction              | Solenoid with flapper/nozzle assembly and booster valve                                                                                                                 |
| Degree of protection      | IP 54 with filter,<br>IP 65 with filter check valve                                                                                                                     |
| Material Enclosure        | Polyamide PA 6-3-T-GF35, black                                                                                                                                          |
| Connection plate          | Al Mg, powder-coated, grayish-beige RAL 1019,<br>Stainless steel 1.4404 (special versions see "Versions and ordering data", page 23),<br>Polyamide PA 6-3-T-GF35, black |
| Screws                    | Stainless steel 1.4571                                                                                                                                                  |
| Springs                   | Stainless steel 1.4310                                                                                                                                                  |
| Gaskets                   | Silicone rubber, Perbunan                                                                                                                                               |
| Diaphragms                | Chloroprene 57 Cr 868 (-20 to +80 °C),<br>Silicone rubber (-45 to +80 °C)                                                                                               |
| Air supply Medium         | Instrument air, free of corrosive particles, or nitrogen                                                                                                                |
| Pressure                  | 1.4 to 6 bar                                                                                                                                                            |
| Air consumption           | <ul> <li>≤ 80 l/h at 1.4 bar air supply in normal position,</li> <li>≤ 10 l/h at 1.4 bar air supply in operating position</li> </ul>                                    |
| Switching time            | $\leq 65 \text{ ms}$                                                                                                                                                    |
| Switching cycles          | $\geq 2 \times 10^7$ (at -20 to +80 °C),<br>$\geq 2 \times 10^6$ (at -45 to +80 °C)                                                                                     |
| Ambient temperature       | see "Electrical data"                                                                                                                                                   |
| Mounting position         | As desired (see Mounting and Operating Instructions EB 3963 EN)                                                                                                         |

| Туре 3963                     |                    | -X1                     |                  | -X2          | -]     | X3     |                     | -08                      | -07                      | -06                       | -05                       |
|-------------------------------|--------------------|-------------------------|------------------|--------------|--------|--------|---------------------|--------------------------|--------------------------|---------------------------|---------------------------|
| Nominal signal                | U <sub>N</sub>     | 6 V DC                  |                  | 12 V DC      |        | 24 V   |                     | 24 V AC                  | 48 V AC                  | 115 V AC                  | 230 V AC                  |
| _                             |                    | Max. 27                 | V <sup>1</sup> ) | Max. 25 V    | 1) N   | Max.   | 32 V <sup>1</sup> ) | Max. 36 V <sup>1</sup> ) | Max. 80 V <sup>1</sup> ) | Max. 130 V <sup>1</sup> ) | Max. 255 V <sup>1</sup> ) |
|                               | f <sub>N</sub>     |                         |                  |              |        |        |                     | 48 62 Hz                 |                          |                           |                           |
| Switching point               | U <sub>+80°C</sub> | $\geq$ 4.8 V            |                  | ≥ 9.6 V      | 2      | ≥ 18   | V                   | 19 36 V                  | 42 80 V                  | 82 130 V                  | 183 255 V                 |
| "On"                          | I <sub>+20°C</sub> | ≥ 1.41 r                | nA               | ≥ 1.52 mA    | . ≥    | ≥ 1.5  | 57 mA               | $\geq$ 1.9 mA            | $\geq$ 1.9 mA            | $\geq$ 2.2 mA             | $\geq$ 2.6 mA             |
|                               | $P_{+20°C}$        | ≥ 5.47 r                | nW               | ≥ 13.05 m'   | W 2    | ≥ 26   | .71 mW              | $\geq$ 0.04 VA           | $\geq$ 0.07 VA           | ≥ 0.17 VA                 | $\geq$ 0.46 VA            |
| "Off"                         | U_25°C             | $\leq 1.0 \text{ V}$    |                  | ≤ 2.4 V      | 1      | ≤ 4.7  | 7 V                 | $\leq$ 4.5 V             | $\leq$ 9 V               | ≤ 18 V                    | $\leq$ 36 V               |
| Impedance                     | $R_{+20°C}$        | 2.6 kΩ                  |                  | 5.5 kΩ       | 1      | 10.7   | kΩ                  | Approx. 10kΩ             | Approx. 24 kΩ            | Approx. 40 kΩ             | Approx.80kΩ               |
| Temperature effect            | ł                  | 0.4 %/°0                | 2                | 0.2 %/°C     | C      | 0.1 %  | s∕°C                | 0.1 %/°C                 | 0.1 %/°C                 | 0.05 %/°C                 | 0.03 %/°C                 |
| Type of protection            | ı EEx ia           | IC <sup>2</sup> ) for u | use in h         | azardous (   | areas  | s (zor | ne 1)               |                          |                          | •                         | •                         |
| Туре 3963                     |                    | -11                     |                  | -12          | -      | 13     |                     |                          |                          |                           |                           |
| Permissible maxim             | num valu           | es for con              | nectior          | to a certif  | ied in | ntrins | ically saf          | e circuit                |                          |                           |                           |
| Output voltage <sup>4</sup> ) | Ui                 | 25 V                    | 27 V             | 28 V         | 30 \   | V      | 32 V                |                          |                          |                           |                           |
| Output current <sup>4</sup> ) | li                 | 150 mA                  | 125 m            | A 115 mA     | 100    | ) mA   | 85 mA               |                          |                          |                           |                           |
| Power dissipation             | Pi                 | 250 mW                  | '                | No Limitatio | on     |        |                     |                          |                          |                           |                           |
| External capacitar            | nce C <sub>i</sub> | ≈ 0                     |                  |              |        |        |                     |                          |                          |                           |                           |
| External inductance           | ce L <sub>i</sub>  | ≈ 0                     |                  |              |        |        |                     |                          |                          |                           |                           |
| Ambient temperat              | ure in te          | mperature               | e class          |              |        |        |                     |                          |                          |                           |                           |
|                               | T6                 | -45                     | +60°C            |              |        |        |                     |                          |                          |                           |                           |
|                               | T5                 | -45                     | +70°C            |              |        |        |                     |                          |                          |                           |                           |
|                               | T4                 | -45                     | +80°C            |              |        |        |                     |                          |                          |                           |                           |
| Type of protection            | n EEx nA           | ll <sup>3</sup> ) for u | se in h          | azardous a   | areas  | (zon   | e 2 or 22           | 2)                       |                          |                           |                           |
| Туре 3963                     |                    | -81                     |                  | -82          | -      | ·83    |                     |                          |                          |                           |                           |
| Ambient temperat              | ure in te          | mperature               | e class          |              |        |        |                     |                          |                          |                           |                           |
|                               | T6                 | -45                     | +60°C            |              |        |        |                     |                          |                          |                           |                           |
|                               | Т5                 | -45                     | +70°C            |              |        |        |                     |                          |                          |                           |                           |
|                               | T4                 | -45                     | +80°C            |              |        |        |                     |                          |                          |                           |                           |

Permissible maximum value at continuous duty. For Ex versions, the permissible maximum value U<sub>i</sub> applies
 II 2 G EEx ia IIC T6 according to EC Type Examination Certificate PTB 01 ATEX 2085
 II 3 G EEx nA II T6 according to Statement of Conformity PTB 01 ATEX 2086 X
 The U<sub>i</sub>/I<sub>i</sub> values apply to nominal signals 6/12/24 V DC

# Technical data (continued from page 7)

| Solenoid valves with sing          | le actuation, K <sub>vs</sub> 0.16 or 0. | .32                                                                                                                |                    |                  |  |  |
|------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------|------------------|--|--|
| Switching function                 | 3/2-way function                         | 3/2-way function                                                                                                   | 5/2-way function   | 6/2-way function |  |  |
| K <sub>vs</sub> <sup>1</sup> )     | 0.16                                     | 0.32                                                                                                               | 0.16               | 0.16             |  |  |
| Safety function                    | SIL 4 <sup>3</sup> ), TÜV <sup>4</sup> ) | SIL 4 <sup>3</sup> ), TÜV <sup>4</sup> )                                                                           | TÜV <sup>4</sup> ) | -                |  |  |
| Construction                       | Diaphragm element, soft-s                | Diaphragm element, soft-seated type, with return spring                                                            |                    |                  |  |  |
| Operating medium                   | Instrument air, free of corr             | nstrument air, free of corrosive particles <sup>4</sup> ), oil-containing air or noncorrosive gases <sup>5</sup> ) |                    |                  |  |  |
| Operating pressure max.            | 6 bar                                    | bar                                                                                                                |                    |                  |  |  |
| Output signal                      | Operating pressure                       |                                                                                                                    |                    |                  |  |  |
| Ambient temperature <sup>2</sup> ) | -45 to +80 °C                            |                                                                                                                    |                    |                  |  |  |
| Connection                         | G (NPT) 1/4                              |                                                                                                                    |                    |                  |  |  |
| Weight approx.                     | 570 g (standard version)                 |                                                                                                                    |                    |                  |  |  |

| Solenoid va                                                                                                                                                  | lves with sing            | le actuation, K <sub>vs</sub> 4.3, threa                 | ded connection                                                |                                                          |                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Switching fu                                                                                                                                                 | nction                    | 3/2-way function                                         | 3/2-way function                                              | 5/2-way function                                         | 6/2-way function                                         |
| K <sub>vs</sub> <sup>1</sup> )<br>(in direction                                                                                                              | of flow)                  | 1.9 (4→3), 1.5 (3→4)<br>4.3 (3→5), 4.7 (5→3)             | 1.9 (4→3), 1.5 (3→4)<br>4.3 (3→5), 4.7 (5→3)                  | 1.9 (4→3), 1.5 (3→4)<br>4.3 (3→5), 4.7 (5→3)             | 1.9 (4→3), 1.5 (3→4)<br>4.3 (3→5), 4.7 (5→3)             |
| Ambient tem                                                                                                                                                  | nperature <sup>2</sup> )  | -20 to +80 °C                                            | −45 to +80 °C                                                 | -20 to +80 °C                                            | -20 to +80 °C                                            |
| Safety functi                                                                                                                                                | on                        | SIL 4 <sup>3</sup> ), TÜV <sup>4</sup> )                 | TÜV⁴)                                                         | -                                                        | -                                                        |
| Construction Seat valve, soft-seated type, with return spring                                                                                                |                           |                                                          |                                                               |                                                          | •                                                        |
| Material Enclosure GD AlSi 12, powder-coated, grayish-beige RAL 1019,<br>stainless steel 1.4404 (special versions see "Versions and ordering data", page 23) |                           | 23)                                                      |                                                               |                                                          |                                                          |
|                                                                                                                                                              | Diaphragm                 | Chloroprene                                              | Silicone rubber                                               | Chloroprene                                              | Chloroprene                                              |
|                                                                                                                                                              | Gaskets                   | Chloroprene                                              | Silicone rubber                                               | Chloroprene                                              | Chloroprene                                              |
|                                                                                                                                                              | Screws                    | Stainless steel 1.4571                                   |                                                               |                                                          |                                                          |
| Actuation                                                                                                                                                    |                           | Single actuated by one pil                               | ot valve, K <sub>vs</sub> 0.16                                |                                                          |                                                          |
| Operating m                                                                                                                                                  | nedium                    |                                                          | osive particles, or nitrogen<br>osive particles, oil-containi | <sup>5</sup> ),<br>ng air or noncorrosive gase           | es <sup>6</sup> )                                        |
| Operating p<br>(in direction                                                                                                                                 | oressure max.<br>of flow) | 10 bar (4→3, 3→5)<br>2 bar (as desired)                  | 10 bar (4→3, 3→5)<br>2 bar (as desired)                       | 10 bar (as desired)<br>2 bar (as desired)                | 10 bar (as desired)<br>2 bar (as desired)                |
|                                                                                                                                                              |                           | ≥ 10 <sup>7</sup> ( 6 bar)<br>≥ 10 <sup>6</sup> (10 bar) | ≥ 10 <sup>6</sup> ( 6 bar)<br>≥ 10 <sup>5</sup> (10 bar)      | ≥ 10 <sup>7</sup> ( 6 bar)<br>≥ 10 <sup>6</sup> (10 bar) | ≥ 10 <sup>7</sup> ( 6 bar)<br>≥ 10 <sup>6</sup> (10 bar) |
| Connection                                                                                                                                                   |                           | G (NPT) 1/2                                              |                                                               |                                                          |                                                          |
| Weight appr                                                                                                                                                  | rox.                      | 585 g (standard version)                                 |                                                               | 1 100 g (standard version                                | )                                                        |

| Solenoid val                                                   | ves with sing                                                                                                                      | e actuation, K <sub>vs</sub> 2.0 or 4.3                                                                                                                                          | , with NAMUR interface                                   |                                                          |                                                          |  |  |  |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--|--|--|
| Switching fu                                                   | nction                                                                                                                             | 3/2 way function with ext                                                                                                                                                        | naust air return                                         |                                                          |                                                          |  |  |  |
| $(K_{vs}^{1})$ 1.1 (4-3)                                       |                                                                                                                                    | 1.1 (4→3)                                                                                                                                                                        | 1.1 (4→3)                                                | 1.9 (4→3)                                                | 1.9 (4→3)                                                |  |  |  |
| (in direction of flow) 2.0 (3→5) 2.0 (3                        |                                                                                                                                    | 2.0 (3→5)                                                                                                                                                                        | 4.3 (3→5)                                                | 4.3 (3→5)                                                |                                                          |  |  |  |
| Ambient temperature <sup>2</sup> ) -20 to +80 °C -45 to +80 °C |                                                                                                                                    | -20 to +80 °C                                                                                                                                                                    | −45 to +80 °C                                            |                                                          |                                                          |  |  |  |
| Safety function                                                | y function SIL 4 <sup>3</sup> ), TÜV <sup>4</sup> ) TÜV <sup>4</sup> ) SIL 4 <sup>3</sup> ), TÜV <sup>4</sup> ) TÜV <sup>4</sup> ) |                                                                                                                                                                                  |                                                          |                                                          | TÜV <sup>4</sup> )                                       |  |  |  |
| Construction Seat valve, soft-seated type, with return sprin   |                                                                                                                                    |                                                                                                                                                                                  |                                                          | •                                                        |                                                          |  |  |  |
| Material                                                       | Enclosure                                                                                                                          | GD AlSi 12, powder-coated, grayish-beige RAL 1019,<br>stainless steel 1.4404 (special versions see "Versions and ordering data", page 23)                                        |                                                          |                                                          |                                                          |  |  |  |
|                                                                | Diaphragm                                                                                                                          | Chloroprene                                                                                                                                                                      | Silicone rubber                                          | Chloroprene                                              | Silicone rubber                                          |  |  |  |
|                                                                | Gaskets                                                                                                                            | Chloroprene                                                                                                                                                                      | Silicone rubber                                          | Chloroprene                                              | Silicone rubber                                          |  |  |  |
|                                                                | Screws                                                                                                                             | Stainless steel 1.4571                                                                                                                                                           | •                                                        | •                                                        |                                                          |  |  |  |
| Actuation                                                      |                                                                                                                                    | Single actuated by one pilot valve, K <sub>vs</sub> 0.16                                                                                                                         |                                                          |                                                          |                                                          |  |  |  |
| Operating m                                                    | edium                                                                                                                              | Instrument air, free of corrosive particles, or nitrogen <sup>5</sup> ),<br>Instrument air, free of corrosive particles, oil containing air or noncorrosive gases <sup>6</sup> ) |                                                          |                                                          |                                                          |  |  |  |
| Operating p                                                    | ressure max.                                                                                                                       | 10 bar                                                                                                                                                                           | 10 bar                                                   | 10 bar                                                   | 10 bar                                                   |  |  |  |
| Switching cy<br>(operating p                                   |                                                                                                                                    | ≥ 10 <sup>7</sup> ( 6 bar)<br>≥ 10 <sup>6</sup> (10 bar)                                                                                                                         | ≥ 10 <sup>6</sup> ( 6 bar)<br>≥ 10 <sup>5</sup> (10 bar) | ≥ 10 <sup>7</sup> ( 6 bar)<br>≥ 10 <sup>6</sup> (10 bar) | ≥ 10 <sup>6</sup> ( 6 bar)<br>≥ 10 <sup>5</sup> (10 bar) |  |  |  |
| Connection                                                     |                                                                                                                                    | G (NPT) <sup>1</sup> / <sub>4</sub> /NAMUR inter                                                                                                                                 |                                                          | G (NPT) 1/2/NAMUR inter                                  |                                                          |  |  |  |
|                                                                | exhaust air                                                                                                                        |                                                                                                                                                                                  |                                                          | G (NPT) $\frac{1}{2}$ /NAMUR interface $\frac{1}{2}$ "7) |                                                          |  |  |  |
| Weight appr                                                    | ox.                                                                                                                                | 1 380 g (standard version)                                                                                                                                                       |                                                          | 1 500 g (standard version)                               |                                                          |  |  |  |

<sup>1</sup>) Air flow at  $p_1 = 2.4$  bar and  $p_2 = 1.0$  bar can be calculated according to the following equation:  $Q = K_{vs} \times 36.22$ , expressed in m<sup>3</sup>/h <sup>2</sup>) The permissible maximum temperature of the solenoid valve depends on the permissible ambient temperature of the components, the type of protection and the temperature class

3) Safety Integrity Level SIL 4 according to IEC 61508 (Report No. V 60 2004 T1)
4) Safety function for use on control valves according to DIN 3394 Part 1, DIN EN 161, DIN 32725, DIN EN 264 and DIN 32730 (Report No. S 284 2007 E1)
5) With internal air supply
6) With external air supply
7) NAMURE is for example as the VEN (VEE 2845)

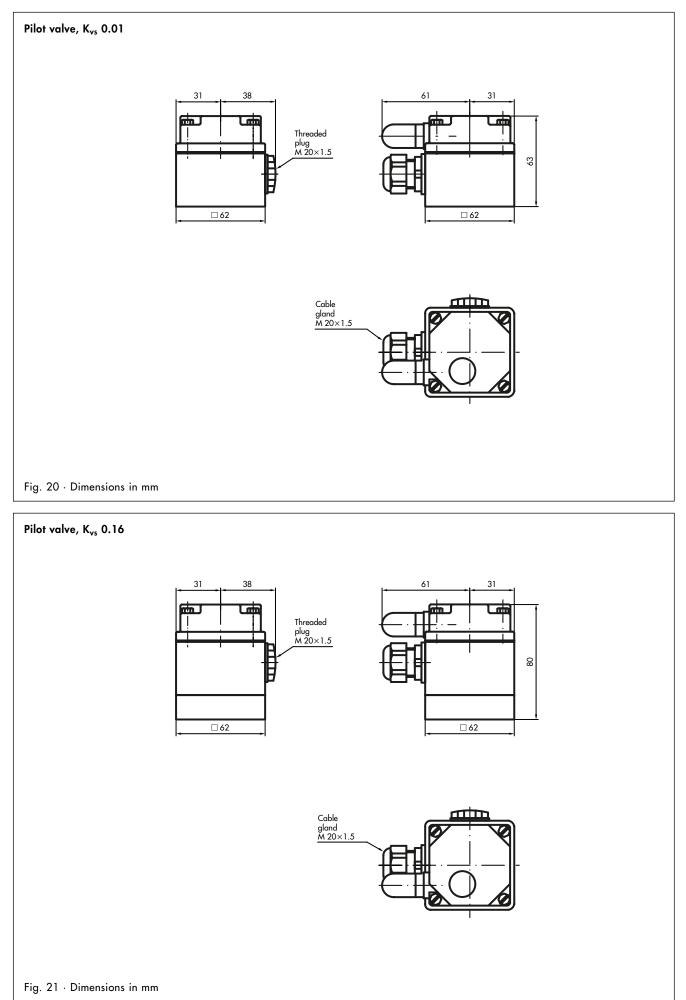
7) NAMUR interface according to VDI/VDE 3845

# Technical data (continued from page 8)

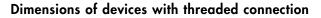
| Solenoid valves                                                | with singl           | e actuation, K <sub>vs</sub> 1.4 or 2.9                                                                                                   |                                  |  |  |  |
|----------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|
| Switching function                                             |                      | 3/2-way function                                                                                                                          | 5/2-way function                 |  |  |  |
|                                                                |                      | with exhaust air return                                                                                                                   |                                  |  |  |  |
| K <sub>vs</sub> <sup>1</sup> )                                 |                      | .4 or 2.9                                                                                                                                 |                                  |  |  |  |
| Safety function TÜV <sup>2</sup> ) (for K <sub>vs</sub> 1.4) – |                      | -                                                                                                                                         |                                  |  |  |  |
| Construction                                                   |                      | Piston valve, metal-to-metal seating, without overlap,                                                                                    | with return spring               |  |  |  |
| Material Enclosure                                             |                      | GD AlSi 12, powder-coated, grayish-beige RAL 1019,<br>stainless steel 1.4404 (special versions see "Versions and ordering data", page 23) |                                  |  |  |  |
|                                                                | Gaskets              | Silicone                                                                                                                                  |                                  |  |  |  |
|                                                                | Filter               | Polyethylene                                                                                                                              |                                  |  |  |  |
|                                                                | Screws               | Stainless steel 1.4571                                                                                                                    |                                  |  |  |  |
| Actuation                                                      |                      | Single actuated by one pilot valve, K <sub>vs</sub> 0.01 (at 1.4) c                                                                       | or K <sub>vs</sub> 0.16 (at 2.9) |  |  |  |
| Operating medi                                                 | um                   | Instrument air, free of corrosive particles, or nitrogen                                                                                  |                                  |  |  |  |
|                                                                |                      | instrument air, free of corrosive particles, oil-containing air or noncorrosive gases <sup>4</sup> )                                      |                                  |  |  |  |
| Operating press                                                | ure max.             | 6 bar <sup>3</sup> ) or 10 bar <sup>4</sup> )                                                                                             |                                  |  |  |  |
| Ambient temper                                                 | ature <sup>5</sup> ) | -45 to +80 °C                                                                                                                             |                                  |  |  |  |
| Switching cycles                                               | ;                    | $\geq 2 \times 10^7$                                                                                                                      |                                  |  |  |  |
| Connection                                                     | K <sub>vs</sub> 1.4  | G (NPT) $\frac{1}{4}$ or NAMUR interface <sup>6</sup> )                                                                                   |                                  |  |  |  |
|                                                                | K <sub>vs</sub> 2.9  | G (NPT) $\frac{1}{2}$ or NAMUR interface <sup>6</sup> )                                                                                   |                                  |  |  |  |
| Weight approx.                                                 | K <sub>vs</sub> 1.4  | 485 g (standard version)                                                                                                                  |                                  |  |  |  |
|                                                                | K <sub>vs</sub> 2.9  | 1760 g (standard version)                                                                                                                 |                                  |  |  |  |

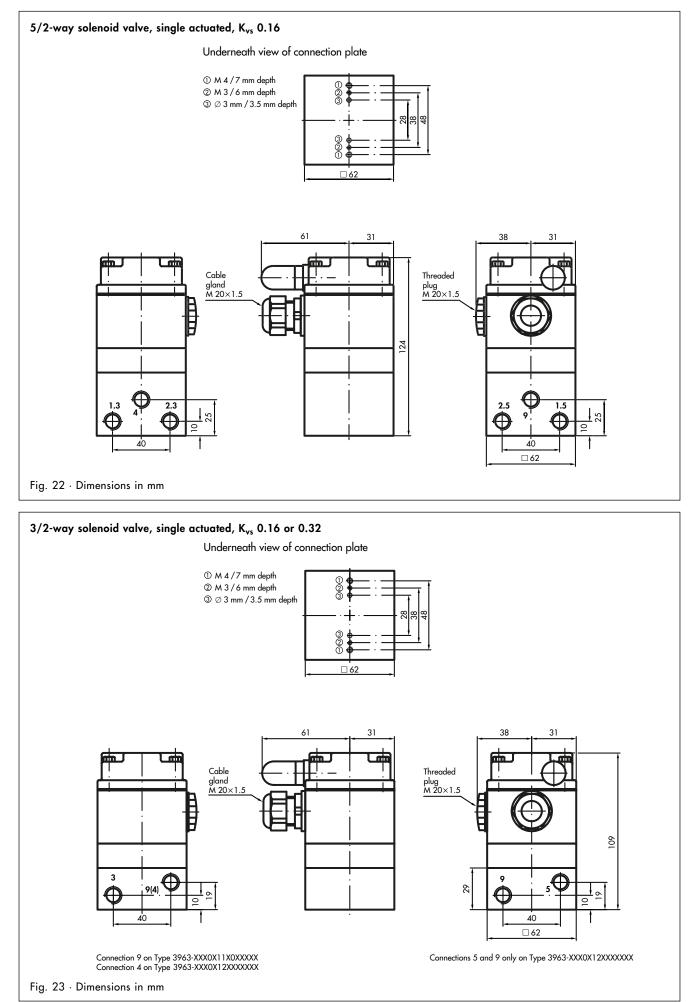
| Solenoid valves                                                | with doub                                                                                                    | ble actuation, K <sub>vs</sub> 1.4 or 2.                | 9                                                                                                                                         |                                    |                                                                                                |  |  |  |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|
| Switching function                                             | on                                                                                                           | 5/2-way function<br>with two locking<br>positions       | ith two locking<br>positions with spring-centered mid-position, connections 2 and 4 closed 2 and 4 vented                                 |                                    | 5/3-way function<br>with spring-centered<br>mid-position, connections<br>2 and 4 to air supply |  |  |  |  |
| K <sub>vs</sub> <sup>1</sup> ) 1.4 or 2.9 1.4 (2.9 on request) |                                                                                                              |                                                         | 1.4 (2.9 on request)                                                                                                                      | 1.4 (2.9 on request)               |                                                                                                |  |  |  |  |
| Safety function                                                | sfety function TÜV <sup>2</sup> ) (for K <sub>vs</sub> 1.4) – TÜV <sup>2</sup> ) (for K <sub>vs</sub> 1.4) – |                                                         |                                                                                                                                           |                                    | -                                                                                              |  |  |  |  |
| Construction                                                   |                                                                                                              | Piston valve, metal-to-meta                             | al seating, without overlap                                                                                                               |                                    |                                                                                                |  |  |  |  |
| Material                                                       | Enclosure                                                                                                    | GD AlSi 12, powder-coate<br>stainless steel 1.4404 (spe | GD AlSi 12, powder-coated, grayish-beige RAL 1019,<br>stainless steel 1.4404 (special versions see "Versions and ordering data", page 23) |                                    |                                                                                                |  |  |  |  |
|                                                                | Gaskets                                                                                                      | Silicone                                                |                                                                                                                                           |                                    |                                                                                                |  |  |  |  |
|                                                                | Filter                                                                                                       | Polyethylene                                            |                                                                                                                                           |                                    |                                                                                                |  |  |  |  |
|                                                                | Screws                                                                                                       | Stainless steel 1.4571                                  |                                                                                                                                           |                                    |                                                                                                |  |  |  |  |
| Actuation                                                      |                                                                                                              | Double actuated by two pi                               | lot valves, K <sub>vs</sub> 0.01 (at 1.4)                                                                                                 | ) or K <sub>vs</sub> 0.16 (at 2.9) |                                                                                                |  |  |  |  |
| Operating medi                                                 | um                                                                                                           |                                                         | osive particles, or nitrogen<br>osive particles, oil-containi                                                                             |                                    | es <sup>4</sup> )                                                                              |  |  |  |  |
| Operating press                                                | ure max.                                                                                                     | 6 bar <sup>3</sup> ) or 10 bar <sup>4</sup> )           | · · · ·                                                                                                                                   |                                    |                                                                                                |  |  |  |  |
| Ambient temper                                                 | ature <sup>5</sup> )                                                                                         | −45 to +80°C                                            |                                                                                                                                           |                                    |                                                                                                |  |  |  |  |
| Switching cycles                                               | ;                                                                                                            | $\geq 2 \times 10^7$                                    | $\geq 2 \times 10^7$                                                                                                                      |                                    |                                                                                                |  |  |  |  |
| Connection                                                     | K <sub>vs</sub> 1.4                                                                                          | G (NPT) $\frac{1}{4}$ or NAMUR int                      | erface <sup>6</sup> )                                                                                                                     |                                    |                                                                                                |  |  |  |  |
|                                                                | K <sub>vs</sub> 2.9                                                                                          | G (NPT) $\frac{1}{2}$ or NAMUR int                      | erface <sup>6</sup> )                                                                                                                     |                                    |                                                                                                |  |  |  |  |
| Weight approx.                                                 | K <sub>vs</sub> 1.4                                                                                          | 685 g (standard version)                                |                                                                                                                                           |                                    |                                                                                                |  |  |  |  |
|                                                                | K <sub>vs</sub> 2.9                                                                                          | 2180 g (standard version)                               |                                                                                                                                           |                                    |                                                                                                |  |  |  |  |

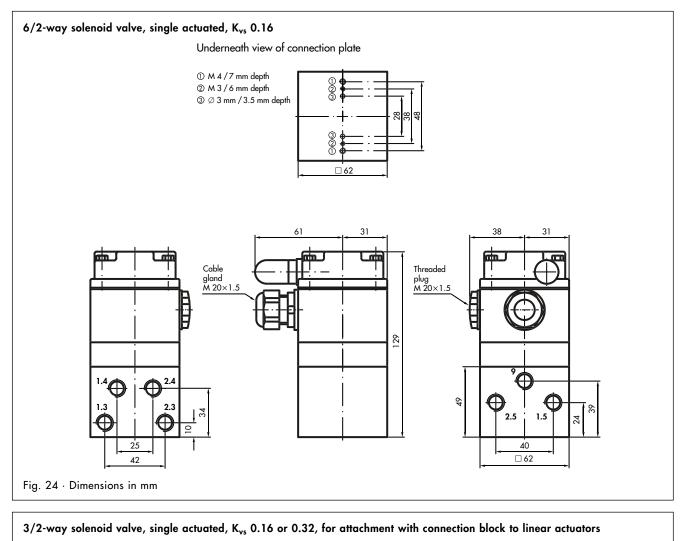
<sup>1</sup>) Air flow at  $p_1=2.4$  bar and  $p_2=1.0$  bar can be calculated according to the following equation:  $Q=K_{vs}\times 36.22$ , expressed in m<sup>3</sup>/h<sup>2</sup>) Safety function for use on control valves according to DIN 3394 Part 1, DIN EN 161, DIN 32725, DIN EN 264 and DIN 32730

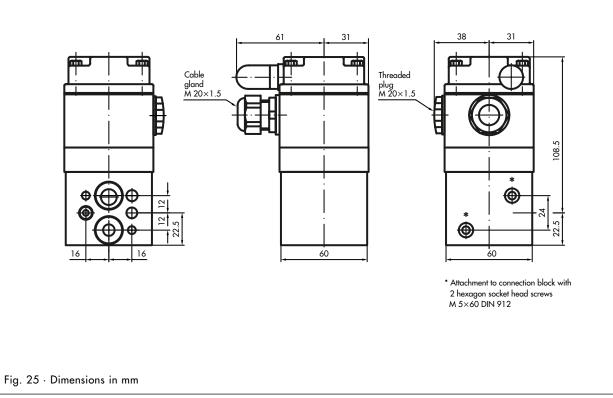

(Report No. S 284 2007 E1)

3) With internal air supply
4) With external air supply


5) The permissible maximum temperature of the solenoid valve depends on the permissible ambient temperature of the components, the type of protection and the temperature class

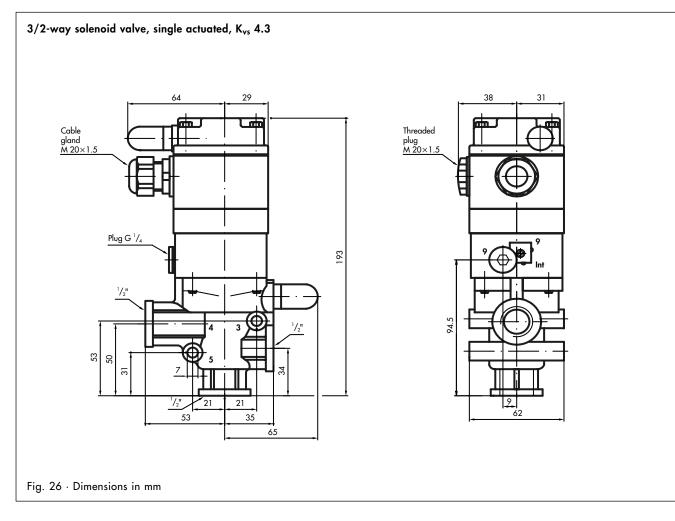

6) NAMUR interface according to VDI/VDE 3845


# Dimensions of devices without threaded connection

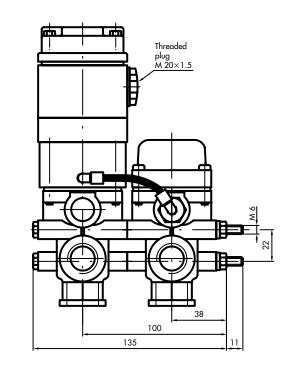



# T 3963 EN







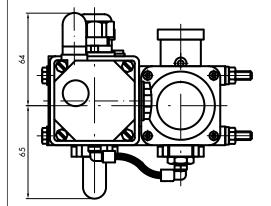
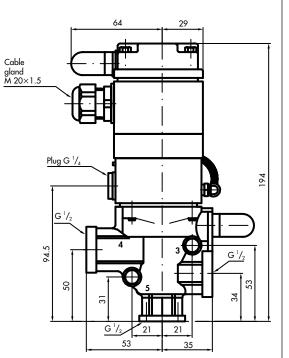

# T 3963 EN

# Dimensions of devices with threaded connection (continued from page 12)



5/2-way solenoid valve, single actuated,  $K_{\nu s}$  4.3



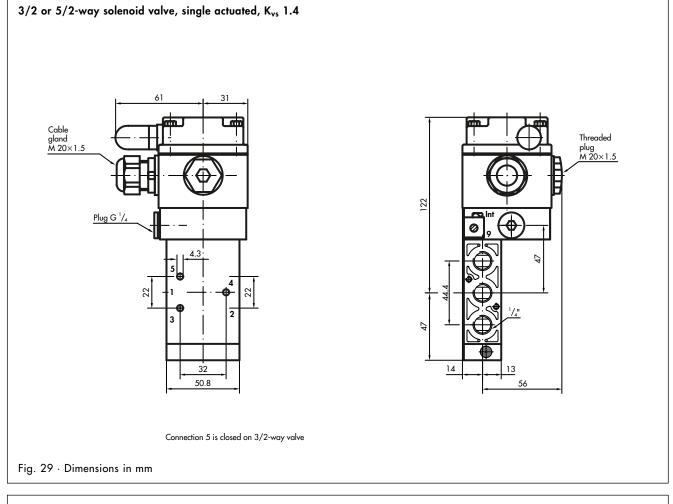



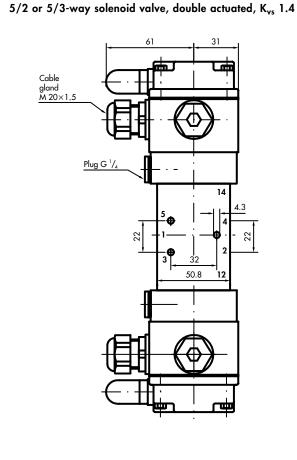
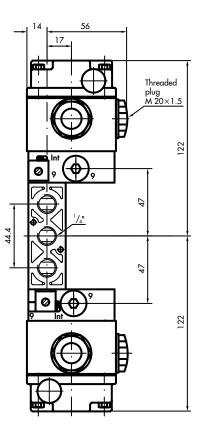
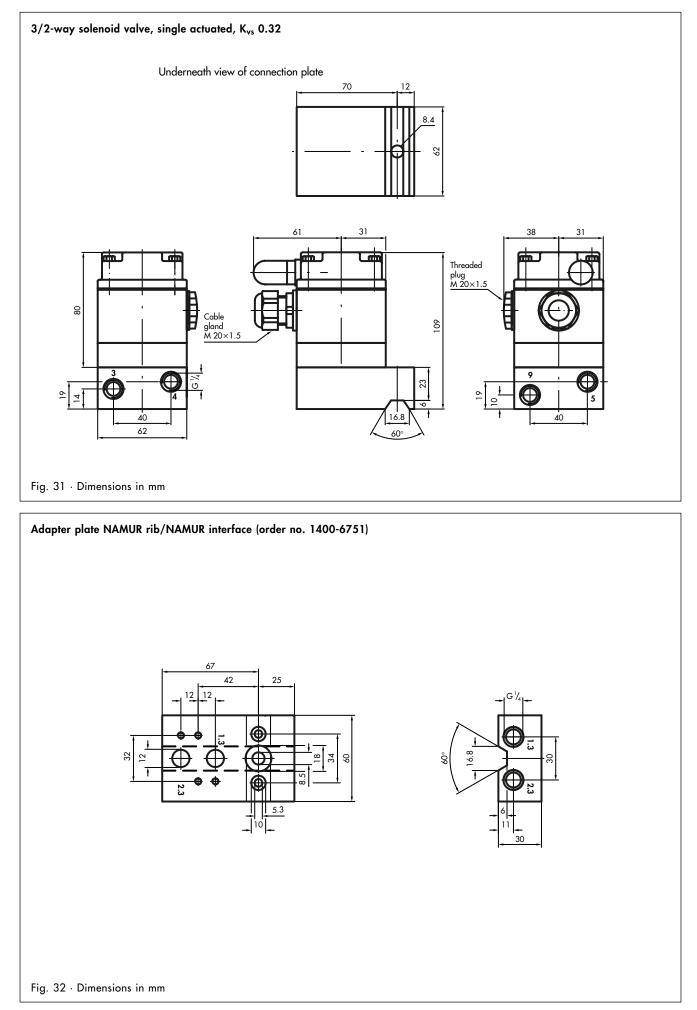

Fig. 27  $\cdot$  Dimensions in mm

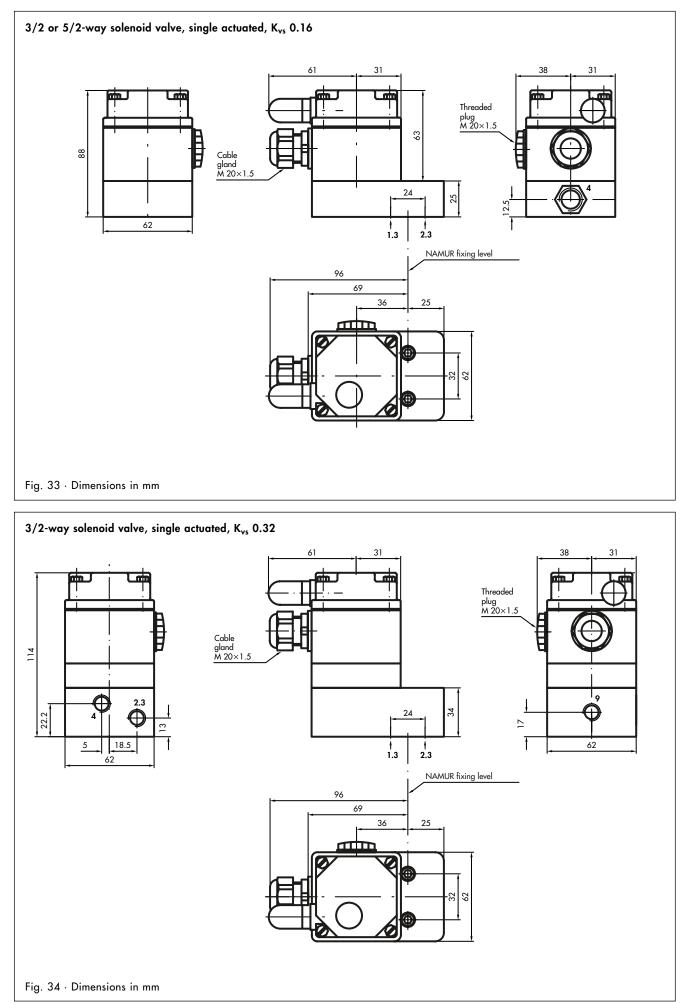
6/2-way solenoid valve, single actuated,  $K_{\nu s}\;4.3$ 

டை Lunin Threaded plug M 20×1.5 ž 38 100 135 64 65



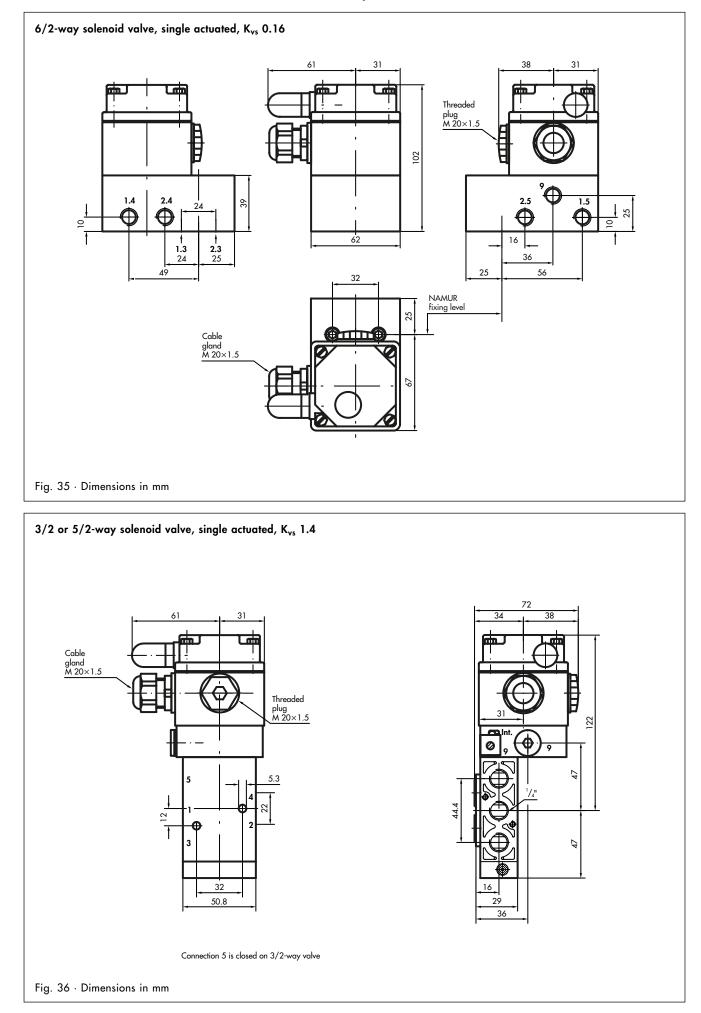


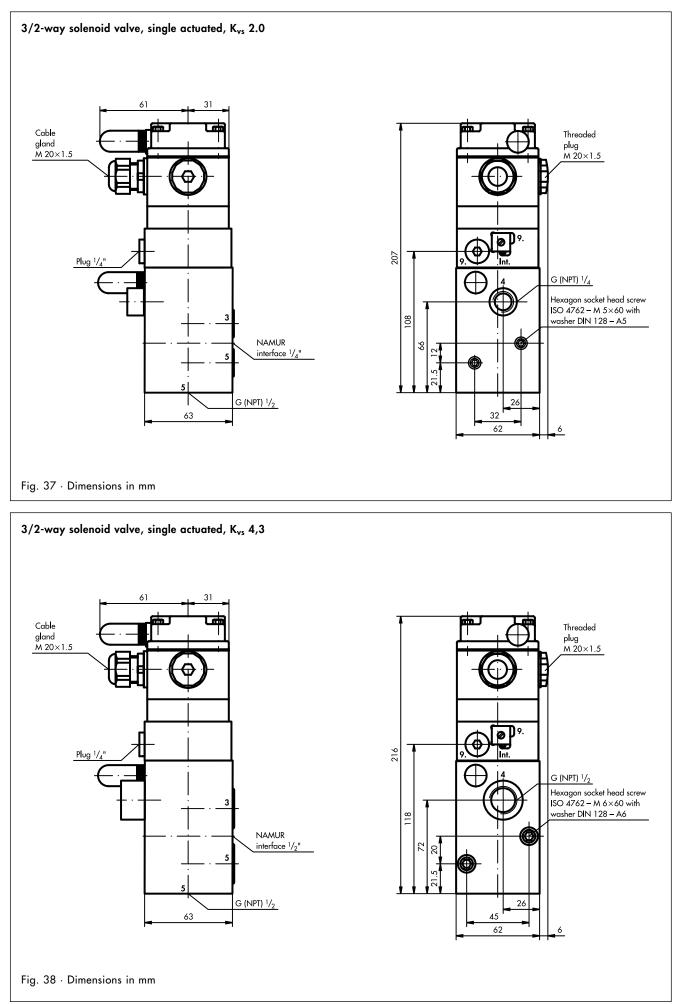


Fig. 30  $\cdot$  Dimensions in mm



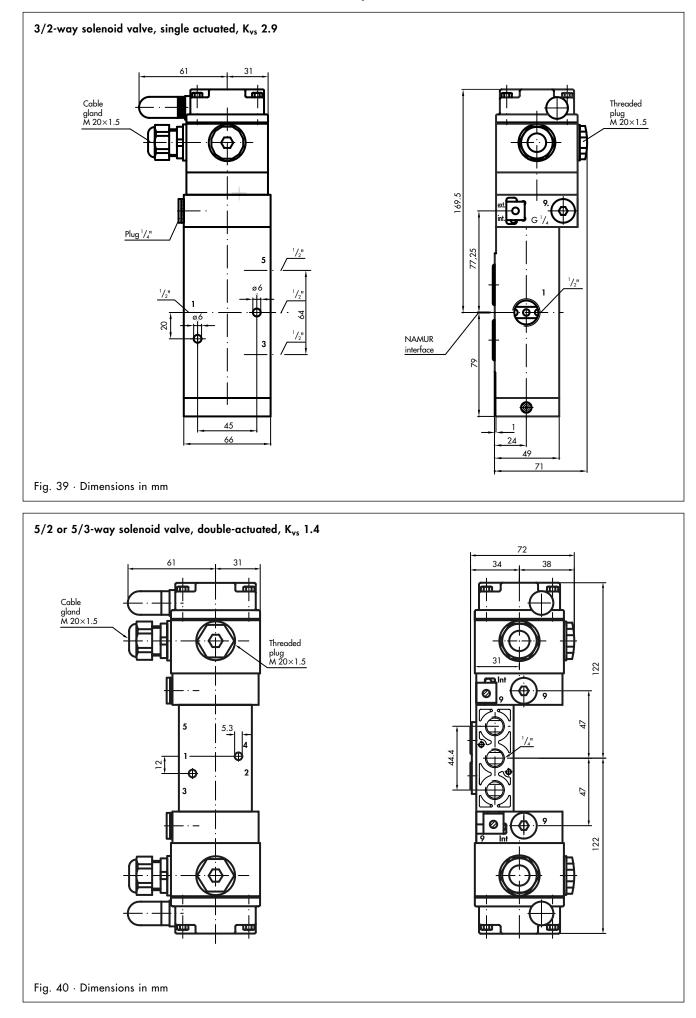
# Dimensions of devices with threaded connection for linear actuators with NAMUR rib

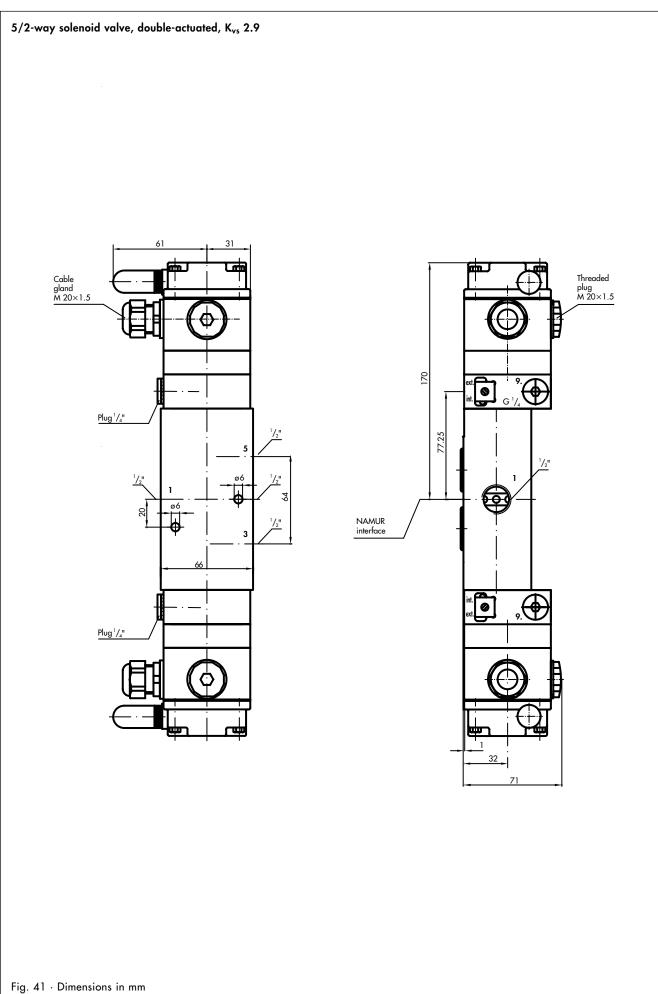



# Dimensions for devices with NAMUR interface for rotary actuators




# T 3963 EN


# Dimensions of devices with NAMUR interface for rotary actuators (continued from page 18)




# Dimensions of devices with NAMUR interface for rotary actuators (continued from page 19)



# Dimensions of devices with NAMUR interface for rotary actuators (continued from page 20)





# Versions and ordering data

|                                                                                                                                                                                                                            | ve Order no. 3963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>.   .   .  </u>                                                   | •                                                                                    | <u>+</u> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +:                                            | +:                                                 | $\left  \cdot \right $ | $\left  \cdot \right $ | ·           | ·           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|------------------------|------------------------|-------------|-------------|
| Type of protection                                                                                                                                                                                                         | Without explosion protection $0 \downarrow A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u></u> ¶,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                        | <b>1</b>                                                                             | <u>†</u>  ↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • ♠                                           | ·[ <b>†</b> ]                                      |                        | <b>↑</b>               | <b>↑</b>  ' | <b>↑</b>  · |
|                                                                                                                                                                                                                            | II 2 G EEx ia IIC T6 (ATEX/GOST) <sup>1</sup> )         (max.+60/70/80°C in T6/T5/T4)         1           Ex ia IIC (CSA) and AEx ia IIC (EM)         (max.+60/70/80°C in T6/T5/T4)         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | Ex ia IIC (CSA) and AEx ia IIC (FM)         (max.+60/70/80°C in T6/T5/T4)         3           II 3 G EEx nA II T6 (ATEX) <sup>2</sup> )         (max.+60/70/80°C in T6/T5/T4)         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
| Nominal signal                                                                                                                                                                                                             | 6 V DC, power consumption 5.47 mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
| Nominal signal                                                                                                                                                                                                             | 12 V DC, power consumption 13.05 mW 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | 24 V DC, power consumption 13:05 mW 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | 48 V AC, power consumption 0.07 VA     (without explosion protection)     7       24 V AC, power consumption 0.04 VA     (without explosion protection)     8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
| Manual override                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
| Manual override                                                                                                                                                                                                            | Without manual override SIL 4/TÜV     0       Pushbutton underneath enclosure cover SIL 4/TÜV     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 늵미미                                                                  |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
| Switching function                                                                                                                                                                                                         | 3/2-way function with spring return mechanism SIL 4/TUV (for all K <sub>vs</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u><u> </u></u>                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | 5/2-way function with spring return mechanism (K <sub>vs</sub> 0.16/1.4/2.9/4.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 님!!!!                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | 5/2-way function with two locking positions TÜV (K <sub>vs</sub> 1.4/2.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | 5/3-way function with spring-centered mid-position (connections 2 and 4 closed) $(K_{vs} 1.4/2.9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | 5/3-way function with spring-centered mid-position (connections 2 and 4 to air supply) $(K_{vs} 1.4/2.9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | 5/3-way function with spring-centered mid-position (connections 2 and 4 vented) TÜV (K <sub>vs</sub> 1.4/2.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | 6/2-way function with spring return mechanism (K <sub>vs</sub> 0.16/4.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
| Restrictors                                                                                                                                                                                                                | Without restrictors SIL 4/TÜV (for all K <sub>v</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | 1 exhaust air restrictor (3/2-way function/NAMUR interface or connection block/K <sub>vs</sub> 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | 2 exhaust air restrictors (5/2-way function/NAMUR interface/K <sub>vs</sub> 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | 1 supply air/1 exhaust air restrictor (3/2-way function/NAMUR interface/K <sub>vs</sub> 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
| Attachment                                                                                                                                                                                                                 | NAMUR interface according to VDI/VDE 3845 SIL 4/TÜV (for all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K <sub>vs</sub> ) 0                                                  |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | Threaded connection SIL 4/TÜV (K <sub>vs</sub> 0.16/0.32/1.4/2.9/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.3) 1                                                               |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | NAMUR rib according to IEC 60534-6-1 SIL 4/TÜV (K <sub>vs</sub> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .32) 2                                                               |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | Connection block for SAMSON Type 3277 Linear Actuator SIL 4/TÜV (K <sub>vs</sub> 0.16/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .32) 3                                                               |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | Flange Type 3963, only as spare part (K <sub>vs</sub> 0.01/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .16) 4                                                               |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
| K <sub>vs</sub> value <sup>3</sup> )                                                                                                                                                                                       | 0.16 SIL 4/TÜV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      | 1                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | 0.32 SIL 4/TÜV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      | 2                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | 1.4 TÜV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      | 3                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | 4.3 SIL 4/TÜV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      | 4                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | 0.01, only as spare part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      | 5                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | 2.9 (NAMUR in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | terface)                                                             | 6                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | 2.0 SIL 4/TÜV (NAMUR in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      | _                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                    |                        |                        |             |             |
| Air connection                                                                                                                                                                                                             | G <sup>1</sup> / <sub>4</sub> (K <sub>vs</sub> 0.16/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      | _                                                                                    | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | 1/4 NPT (K <sub>vs</sub> 0.16/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                                                                                      | ill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s 2.9/4.3                                                            | _                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>, 2.9/4.3</u>                                                     | _                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            | None (Pilot valve as spare part/connection block for SAMSON Type 3277 Linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      | -                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |                                                    |                        |                        |             |             |
|                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               | 112                                                |                        |                        |             |             |
| Connection of                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               | 111                                                |                        |                        |             |             |
| Connection of<br>air supply                                                                                                                                                                                                | Internal connection for on-off actuators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |                                                    |                        |                        |             |             |
| air supply                                                                                                                                                                                                                 | Internal connection for on-off actuators<br>External connection for continuous actuators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |                                                    |                        |                        |             |             |
| air supply<br>Electrical connection                                                                                                                                                                                        | Internal connection for on-off actuators<br>External connection for continuous actuators<br>Cable gland made of polyamide, black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (min                                                                 | -20                                                                                  | 1<br>)°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                             |                                                    | -                      |                        |             |             |
| <b>air supply</b><br>Electrical connection<br>Terminal, 2 poles,                                                                                                                                                           | Internal connection for on-off actuators<br>External connection for continuous actuators<br>Cable gland made of polyamide, black<br>Cable gland made of polyamide, blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (min<br>(min                                                         | - 20<br>- 20                                                                         | 1<br>)°C)<br>)°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                             | 1                                                  | -                      |                        |             |             |
| air supply<br>Electrical connection                                                                                                                                                                                        | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, grayish-beige RAL 1019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (min<br>(min<br>(min                                                 | -20<br>-20<br>-45                                                                    | 1<br>0°C)<br>0°C)<br>5°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                             | 1                                                  |                        |                        |             |             |
| <b>air supply</b><br>Electrical connection<br>Terminal, 2 poles,<br>threaded connection                                                                                                                                    | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, grayish-beige RAL 1019         EExe cable gland (manufactured by CEAG) made of polyamide, black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (min<br>(min<br>(min<br>(min                                         | -20<br>-20<br>-45<br>-20                                                             | 1<br>0°C)<br>0°C)<br>5°C)<br>5°C)<br>0°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>1<br>1<br>1                              | 1<br>2<br>3                                        |                        |                        |             |             |
| <b>air supply</b><br>Electrical connection<br>Terminal, 2 poles,<br>threaded connection                                                                                                                                    | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, grayish-beige RAL 1019         EExe cable gland (manufactured by CEAG) made of polyamide, black       Cable gland         Cable gland       made of brass, nickel-plated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (min<br>(min<br>(min<br>(min<br>(min                                 | -20<br>-20<br>-45<br>-20<br>-45                                                      | 1<br>0°C)<br>0°C)<br>5°C)<br>5°C)<br>0°C)<br>5°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>1<br>1<br>1<br>1                         | 1<br>2<br>3<br>4                                   |                        |                        |             |             |
| air supply<br>Electrical connection<br>Terminal, 2 poles,<br>threaded connection<br>M 20 × 1.5                                                                                                                             | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, grayish-beige RAL 1019         EExe cable gland (manufactured by CEAG) made of polyamide, black       Cable gland         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated, blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (min<br>(min<br>(min<br>(min<br>(min<br>(min                         | -20<br>-20<br>-45<br>-20<br>-45<br>-45                                               | 1<br>)°C)<br>)°C)<br>)°C)<br>5°C)<br>)°C)<br>)°C)<br>5°C)<br>5°C)<br>5°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>1<br>1<br>1<br>1<br>1<br>1               | 1<br>2<br>3<br>4<br>5                              |                        |                        |             |             |
| <b>air supply</b><br>Electrical connection<br>Terminal, 2 poles,<br>threaded connection                                                                                                                                    | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, grayish-beige RAL 1019         Etxe cable gland (manufactured by CEAG) made of polyamide, black       Cable gland         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated, blue         Male connector (manufactured by Harting),       8 poles, made of aluminum, silvery gray <sup>4</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (min<br>(min<br>(min<br>(min<br>(min<br>(min                         | -20<br>-20<br>-45<br>-45<br>-45<br>-20                                               | 1<br>)°C)<br>)°C)<br>5°C)<br>5°C)<br>5°C)<br>5°C)<br>5°C)<br>5°C)<br>0°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>1<br>1<br>1<br>1<br>1<br>2               | 1<br>2<br>3<br>4<br>5<br>1                         | -                      |                        |             |             |
| air supply<br>Electrical connection<br>Terminal, 2 poles,<br>threaded connection<br>M 20 × 1.5                                                                                                                             | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, grayish-beige RAL 1019         EExe cable gland (manufactured by CEAG) made of polyamide, black       Cable gland         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated, blue         Male connector (manufactured by Harting),       8 poles, made of aluminum, silvery gray <sup>4</sup> )         Round plug connector M 12×1,       4 poles, made of brass, nickel-plated <sup>4</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min         | - 20<br>- 20<br>- 45<br>- 20<br>- 45<br>- 45<br>- 20<br>- 45                         | 1<br>)*C)<br>)*C)<br>5*C)<br>5*C)<br>5*C)<br>5*C)<br>0*C)<br>5*C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>1<br>1<br>1<br>1<br>1<br>2<br>2          | 1<br>2<br>3<br>4<br>5<br>1<br>2                    |                        |                        |             |             |
| air supply<br>Electrical connection<br>Terminal, 2 poles,<br>threaded connection<br>M 20 × 1.5<br>Plug-type connection                                                                                                     | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, grayish-beige RAL 1019         EExe cable gland (manufactured by CEAG) made of polyamide, black       Cable gland         Cable gland       made of polyamide, black         Cable gland       made of polyamide, black         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated         Male connector (manufactured by Harting), 8 poles, made of aluminum, silvery gray 4)       Round plug connector M 12 × 1, 4 poles, made of brass, nickel-plated 4)         Male connector according to EN 175301-803, 4 poles, made of polyamide, black 4)       Made connector 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min | -20<br>-20<br>-45<br>-20<br>-45<br>-45<br>-20<br>-45<br>-20                          | 1<br>) °C)<br>) °C)<br>) °C)<br>5 °C)<br>5 °C)<br>5 °C)<br>5 °C)<br>) °C)<br>5 °C)<br>) °C)<br>0 °C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>1<br>1<br>1<br>1<br>2<br>2<br>2          | 1<br>2<br>3<br>4<br>5<br>1<br>2<br>3               |                        |                        |             |             |
| terminal, 2 poles,<br>threaded connection<br>M 20 × 1.5<br>Plug-type connection                                                                                                                                            | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, grayish-beige RAL 1019         EExe cable gland (manufactured by CEAG) made of polyamide, black       Cable gland         Cable gland       made of polyamide, black         Cable gland       made of polyamide, black         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated, blue         Male connector (manufactured by Harting),       8 poles, made of aluminum, silvery gray <sup>4</sup> )         Round plug connector M 12 × 1,       4 poles, made of brass, nickel-plated 4)         Male connector according to EN 175301-803, 4 poles, made of polyamide, black <sup>4</sup> )       IP 54 with filter made of polyethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min | - 20<br>- 20<br>- 45<br>- 20<br>- 45<br>- 20<br>- 45<br>- 20<br>(min                 | 1<br>)°C)<br>)°C)<br>5°C)<br>5°C)<br>5°C)<br>5°C)<br>5°C)<br>5°C)<br>5°C)<br>5°C)<br>1. –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>1<br>1<br>1<br>1<br>2<br>2<br>20°        | 1<br>2<br>3<br>4<br>5<br>1<br>2<br>3<br>°C)        | -                      |                        |             |             |
| stir supply<br>Electrical connection<br>Terminal, 2 poles,<br>threaded connection<br>M 20 × 1.5<br>Plug-type connection                                                                                                    | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, grayish-beige RAL 1019         EExe cable gland (manufactured by CEAG) made of polyamide, black       Cable gland         Cable gland       made of polyamide, black         Cable gland       made of polyamide, black         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated         Round plug connector (M 12 × 1, 4 poles, made of polyamide, black 4)       Ploes, made of polyamide, black 4)         IP 54 with filter made of polyethylene       IP 54 with filter made of polyethylene         IP 65 with filter check valve made of polyamide       IP statistical check valve made of polyamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min         | - 20<br>- 20<br>- 45<br>- 20<br>- 45<br>- 45<br>- 20<br>- 45<br>- 20<br>(min<br>(min | 1<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C) | 0<br>1<br>1<br>1<br>1<br>1<br>2<br>20°<br>20° | 1<br>2<br>3<br>4<br>5<br>1<br>2<br>3<br>°C)<br>°C) | 0                      |                        |             |             |
| tir supply<br>Electrical connection<br>Terminal, 2 poles,<br>threaded connection<br>M 20×1.5<br>Plug-type connection                                                                                                       | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, grayish-beige RAL 1019         EExe cable gland (manufactured by CEAG) made of polyamide, black       Cable gland         Cable gland       made of polyamide, black         Cable gland       made of polyamide, black         Cable gland       made of polyamide, black         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated, blue         Male connector (manufactured by Harting),       8 poles, made of aluminum, silvery gray 4)         Round plug connector M 12×1,       4 poles, made of brass, nickel-plated 4)         Male connector according to EN 175301-803, 4 poles, made of polyamide, black 4)       IP 54 with filter made of polyethylene         IP 54 with filter check valve made of polyamide       IP 65 with filter check valve made of polyamide         IP 65 with filter check valve made of stainless steel 1.4305       IA305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min         | - 20<br>- 20<br>- 45<br>- 20<br>- 45<br>- 45<br>- 20<br>- 45<br>- 20<br>(min<br>(min | 1<br>)°C)<br>)°C)<br>5°C)<br>5°C)<br>5°C)<br>5°C)<br>5°C)<br>5°C)<br>5°C)<br>5°C)<br>1. –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>1<br>1<br>1<br>1<br>1<br>2<br>20°<br>20° | 1<br>2<br>3<br>4<br>5<br>1<br>2<br>3<br>°C)<br>°C) | -                      |                        |             |             |
| tir supply<br>Electrical connection<br>Terminal, 2 poles,<br>threaded connection<br>M 20×1.5<br>Plug-type connection                                                                                                       | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, grayish-beige RAL 1019         EExe cable gland       made of polyamide, black         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated, blue         Male connector (manufactured by Harting),       8 poles, made of aluminum, silvery gray <sup>4</sup> )         Round plug connector M 12×1,       4 poles, made of brass, nickel-plated 4)         Male connector according to EN 175301-803, 4 poles, made of polyamide, black 4)       IP 54 with filter made of polyethylene         IP 54 with filter check valve made of polyamide       IP 65 with filter check valve made of polyamide         IP 65 with filter check valve made of stainless steel 1.4305       -20 to + 80 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min         | - 20<br>- 20<br>- 45<br>- 20<br>- 45<br>- 45<br>- 20<br>- 45<br>- 20<br>(min<br>(min | 1<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C) | 0<br>1<br>1<br>1<br>1<br>1<br>2<br>20°<br>20° | 1<br>2<br>3<br>4<br>5<br>1<br>2<br>3<br>°C)<br>°C) | 0                      | 0                      |             |             |
| tir supply<br>Electrical connection<br>Terminal, 2 poles,<br>threaded connection<br>M 20 × 1.5<br>Plug-type connection<br>Degree of protection                                                                             | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, grayish-beige RAL 1019         Etxe cable gland (manufactured by CEAG) made of polyamide, black       Cable gland         Cable gland       made of brass, nickel-plated         Male connector (manufactured by Harting),       8 poles, made of aluminum, silvery gray 4)         Round plug connector M 12 × 1,       4 poles, made of polyamide, black 4         IP 54 with filter made of polyethylene       IP 54 with filter check valve made of polyamide         IP 65 with filter check valve made of polyamide       IP 65 with filter check valve made of stainless steel 1.4305         -20 to +80 °C       -20 to +80 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min         | - 20<br>- 20<br>- 45<br>- 20<br>- 45<br>- 45<br>- 20<br>- 45<br>- 20<br>(min<br>(min | 1<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C) | 0<br>1<br>1<br>1<br>1<br>1<br>2<br>20°<br>20° | 1<br>2<br>3<br>4<br>5<br>1<br>2<br>3<br>°C)<br>°C) | 0                      | 2                      |             |             |
| tir supply<br>dectrical connection<br>Terminal, 2 poles,<br>threaded connection<br>M 20 × 1.5<br>Plug-type connection<br>Degree of protection<br>Ambient temperature <sup>5</sup> )                                        | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, grayish-beige RAL 1019         Etxe cable gland (manufactured by CEAG) made of polyamide, black       Cable gland         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated, blue         Male connector (manufactured by Harting),       8 poles, made of aluminum, silvery gray <sup>4</sup> )         Round plug connector M 12 × 1,       4 poles, made of polyamide, black 4         Mele connector according to EN 175301-803, 4 poles, made of polyamide, black 4         IP 54 with filter made of polyethylene         IP 65 with filter check valve made of polyamide         IP 65 with filter check valve made of stainless steel 1.4305         -20 to +80 °C         -45 to +80 °C         Without safety function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min         | - 20<br>- 20<br>- 45<br>- 20<br>- 45<br>- 45<br>- 20<br>- 45<br>- 20<br>(min<br>(min | 1<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C) | 0<br>1<br>1<br>1<br>1<br>1<br>2<br>20°<br>20° | 1<br>2<br>3<br>4<br>5<br>1<br>2<br>3<br>°C)<br>°C) | 0                      | 2                      | 0           |             |
| sir supply<br>Electrical connection<br>Terminal, 2 poles,<br>threaded connection<br>M 20 × 1.5<br>Plug-type connection<br>Degree of protection<br>Ambient temperature <sup>5</sup> )                                       | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, gravish-beige RAL 1019         EExe cable gland       made of polyamide, black         Cable gland       made of polyamide, black         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated, blue         Male connector (manufactured by Harting), 8 poles, made of aluminum, silvery gray <sup>4</sup> )         Round plug connector M 12×1, 4 poles, made of polyamide, black 4)         IP 54 with filter made of polyethylene         IP 55 with filter check valve made of polyamide         IP 65 with filter check valve made of polyamide         IP 65 with filter check valve made of stainless steel 1.4305         -20 to +80 °C         Without safety function         SIL 4 <sup>6</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min         | - 20<br>- 20<br>- 45<br>- 20<br>- 45<br>- 45<br>- 20<br>- 45<br>- 20<br>(min<br>(min | 1<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C) | 0<br>1<br>1<br>1<br>1<br>1<br>2<br>20°<br>20° | 1<br>2<br>3<br>4<br>5<br>1<br>2<br>3<br>°C)<br>°C) | 0                      | 2                      | 1           |             |
| air supply<br>Electrical connection<br>Terminal, 2 poles,<br>threaded connection<br>M 20 × 1.5<br>Plug-type connection<br>Degree of protection<br>Ambient temperature <sup>5</sup> )                                       | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, grayish-beige RAL 1019         Etxe cable gland (manufactured by CEAG) made of polyamide, black       Cable gland         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated, blue         Male connector (manufactured by Harting),       8 poles, made of aluminum, silvery gray <sup>4</sup> )         Round plug connector M 12 × 1,       4 poles, made of polyamide, black 4         Mele connector according to EN 175301-803, 4 poles, made of polyamide, black 4         IP 54 with filter made of polyethylene         IP 65 with filter check valve made of polyamide         IP 65 with filter check valve made of stainless steel 1.4305         -20 to +80 °C         -45 to +80 °C         Without safety function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min         | - 20<br>- 20<br>- 45<br>- 20<br>- 45<br>- 45<br>- 20<br>- 45<br>- 20<br>(min<br>(min | 1<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C) | 0<br>1<br>1<br>1<br>1<br>1<br>2<br>20°<br>20° | 1<br>2<br>3<br>4<br>5<br>1<br>2<br>3<br>°C)<br>°C) | 0                      | 2                      |             |             |
| air supply<br>Electrical connection<br>Terminal, 2 poles,<br>threaded connection<br>M 20 × 1.5                                                                                                                             | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, gravish-beige RAL 1019         EExe cable gland       made of polyamide, black         Cable gland       made of polyamide, black         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated, blue         Male connector (manufactured by Harting), 8 poles, made of aluminum, silvery gray <sup>4</sup> )         Round plug connector M 12×1, 4 poles, made of polyamide, black 4)         IP 54 with filter made of polyethylene         IP 55 with filter check valve made of polyamide         IP 65 with filter check valve made of polyamide         IP 65 with filter check valve made of stainless steel 1.4305         -20 to +80 °C         Without safety function         SIL 4 <sup>6</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min         | - 20<br>- 20<br>- 45<br>- 20<br>- 45<br>- 45<br>- 20<br>- 45<br>- 20<br>(min<br>(min | 1<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C) | 0<br>1<br>1<br>1<br>1<br>1<br>2<br>20°<br>20° | 1<br>2<br>3<br>4<br>5<br>1<br>2<br>3<br>°C)<br>°C) | 0                      | 2                      | 1<br>2      | 0           |
| air supply<br>Electrical connection<br>Terminal, 2 poles,<br>threaded connection<br>M 20 × 1.5<br>Plug-type connection<br>Degree of protection<br>Ambient temperature <sup>5</sup> )<br>Safety function                    | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, gravish-beige RAL 1019         EExe cable gland       made of polyamide, black         Cable gland       made of polyamide, black         Cable gland       made of polyamide, black         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated, blue         Male connector (manufactured by Harting),       8 poles, made of aluminum, silvery gray <sup>4</sup> )         Round plug connector M 12 × 1,       4 poles, made of polyamide, black <sup>4</sup> )         IP 54 with filter made of polyethylene       IP 54 with filter check valve made of polyamide         IP 65 with filter check valve made of polyamide       IP 65 with filter check valve made of stainless steel 1.4305         -20 to +80 °C       Without safety function         SIL 4 <sup>6</sup> )       TÜV7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min         | - 20<br>- 20<br>- 45<br>- 20<br>- 45<br>- 45<br>- 20<br>- 45<br>- 20<br>(min<br>(min | 1<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C) | 0<br>1<br>1<br>1<br>1<br>1<br>2<br>20°<br>20° | 1<br>2<br>3<br>4<br>5<br>1<br>2<br>3<br>°C)<br>°C) | 0                      | 2                      | 1<br>2      | 0           |
| air supply<br>Electrical connection<br>Terminal, 2 poles,<br>threaded connection<br>M 20 × 1.5<br>Plug-type connection<br>Degree of protection<br>Ambient temperature <sup>5</sup> )<br>Safety function<br>Special version | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, grayish-beige RAL 1019         Etxe cable gland (manufactured by CEAG) made of polyamide, black       Cable gland         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated, blue         Male connector (manufactured by Harting),       8 poles, made of aluminum, silvery gray 4)         Round plug connector M 12 × 1,       4 poles, made of polyamide, black 4)         IP 54 with filter made of polyethylene       IP 54 with filter made of polyethylene         IP 65 with filter check valve made of stainless steel 1.4305       -20 to +80 °C         -20 to +80 °C       Without safety function         SIL 4 <sup>6</sup> )       TÜV7)         Without special version       Connection plate/booster valve enclosure made of stainless steel 1.4404 for the following versions: 3/2-way function with spring return mechanism, Kvs value 0.32, with NAMUR interface or for NAMUR rib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min                 | - 20<br>- 20<br>- 45<br>- 20<br>- 45<br>- 45<br>- 20<br>- 45<br>- 20<br>(min<br>(min | 1<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C) | 0<br>1<br>1<br>1<br>1<br>1<br>2<br>20°<br>20° | 1<br>2<br>3<br>4<br>5<br>1<br>2<br>3<br>°C)<br>°C) | 0                      | 2                      | 1 2         |             |
| air supply<br>Electrical connection<br>Terminal, 2 poles,<br>threaded connection<br>M 20 × 1.5<br>Plug-type connection<br>Degree of protection<br>Ambient temperature <sup>5</sup> )<br>Safety function<br>Special version | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, grayish-beige RAL 1019         EExe cable gland (manufactured by CEAG) made of polyamide, black       Cable gland         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated, blue         Male connector (manufactured by Harting),       8 poles, made of aluminum, silvery gray <sup>4</sup> )         Round plug connector M 12 × 1,       4 poles, made of polyamide, black         Male connector according to EN 175301-803, 4 poles, made of polyamide, black <sup>4</sup> )       IP 54 with filter made of polyethylene         IP 54 with filter check valve made of polyamide       IP 54 with filter check valve made of polyamide         IP 55 with filter check valve made of stainless steel 1.4305       -20 to +80 °C         -20 to +80 °C       Without safety function         SIL 4 <sup>6</sup> )       TÜV7]         Without special version       Connection plate/booster valve enclosure made of stainless steel 1.4404 for the following versions:         3/2-way function with spring return mechanism, K <sub>vs</sub> value 0.32, with NAMUR interface or threaded connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min                 | - 20<br>- 20<br>- 45<br>- 20<br>- 45<br>- 45<br>- 20<br>- 45<br>- 20<br>(min<br>(min | 1<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C) | 0<br>1<br>1<br>1<br>1<br>1<br>2<br>20°<br>20° | 1<br>2<br>3<br>4<br>5<br>1<br>2<br>3<br>°C)<br>°C) | 0                      | 2                      | 1 2         | 0           |
| air supply<br>Electrical connection<br>Terminal, 2 poles,<br>threaded connection<br>M 20 × 1.5<br>Plug-type connection<br>Degree of protection<br>Ambient temperature <sup>5</sup> )<br>Safety function<br>Special version | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, gravish-beige RAL 1019         EExe cable gland (manufactured by CEAG) made of polyamide, black       Cable gland         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated, blue         Male connector (manufactured by Harting), 8 poles, made of aluminum, silvery gray <sup>4</sup> )         Round plug connector M 12 × 1, 4 poles, made of polyamide, black 4         IP 54 with filter made of polyethylene         IP 65 with filter check valve made of polyamide         IP 65 with filter check valve made of stainless steel 1.4305         -20 to +80 °C         Without safety function         SIL 4 <sup>4</sup> )         TÚV7)         Without special version         Connection plate/booster valve enclosure made of stainless steel 1.4404 for the following versions:         3/2-way function with spring return mechanism, Kvs value 0.32, with NAMUR interface or for NAMUR rib <td< td=""><td>(min<br/>(min<br/>(min<br/>(min<br/>(min<br/>(min<br/>(min</td><td>- 20<br/>- 20<br/>- 45<br/>- 20<br/>- 45<br/>- 45<br/>- 20<br/>- 45<br/>- 20<br/>(min<br/>(min</td><td>1<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)<br/>)°C)</td><td>0<br/>1<br/>1<br/>1<br/>1<br/>1<br/>2<br/>20°<br/>20°</td><td>1<br/>2<br/>3<br/>4<br/>5<br/>1<br/>2<br/>3<br/>°C)<br/>°C)</td><td>0</td><td>2</td><td>1 2</td><td></td></td<> | (min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min                 | - 20<br>- 20<br>- 45<br>- 20<br>- 45<br>- 45<br>- 20<br>- 45<br>- 20<br>(min<br>(min | 1<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C) | 0<br>1<br>1<br>1<br>1<br>1<br>2<br>20°<br>20° | 1<br>2<br>3<br>4<br>5<br>1<br>2<br>3<br>°C)<br>°C) | 0                      | 2                      | 1 2         |             |
| air supply<br>Electrical connection<br>Terminal, 2 poles,<br>threaded connection<br>M 20 × 1.5<br>Plug-type connection<br>Degree of protection<br>Ambient temperature <sup>5</sup> )<br>Safety function<br>Special version | Internal connection for on-off actuators         External connection for continuous actuators         Cable gland       made of polyamide, black         Cable gland       made of polyamide, blue         Adapter 1/2 NPT       made of aluminum, powder-coated, grayish-beige RAL 1019         EExe cable gland (manufactured by CEAG) made of polyamide, black       Cable gland         Cable gland       made of brass, nickel-plated         Cable gland       made of brass, nickel-plated, blue         Male connector (manufactured by Harting),       8 poles, made of aluminum, silvery gray <sup>4</sup> )         Round plug connector M 12 × 1,       4 poles, made of polyamide, black         Male connector according to EN 175301-803, 4 poles, made of polyamide, black <sup>4</sup> )       IP 54 with filter made of polyethylene         IP 54 with filter check valve made of polyamide       IP 54 with filter check valve made of polyamide         IP 55 with filter check valve made of stainless steel 1.4305       -20 to +80 °C         -20 to +80 °C       Without safety function         SIL 4 <sup>6</sup> )       TÜV7]         Without special version       Connection plate/booster valve enclosure made of stainless steel 1.4404 for the following versions:         3/2-way function with spring return mechanism, K <sub>vs</sub> value 0.32, with NAMUR interface or threaded connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (min<br>(min<br>(min<br>(min<br>(min<br>(min<br>(min                 | - 20<br>- 20<br>- 45<br>- 20<br>- 45<br>- 45<br>- 20<br>- 45<br>- 20<br>(min<br>(min | 1<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C)<br>)°C) | 0<br>1<br>1<br>1<br>1<br>1<br>2<br>20°<br>20° | 1<br>2<br>3<br>4<br>5<br>1<br>2<br>3<br>°C)<br>°C) | 0                      | 2                      | 1 2         |             |

<sup>1</sup>) According to EC Type Examination Certificate PTB 01 ATEX 2085

<sup>1</sup>) According to EC type Examination Certificate PIB 01 AIEX 2085
<sup>2</sup>) According to Statement of Conformity PTB 01 ATEX 2086 X
<sup>3</sup>) Air flow at p1=2.4 bar and p2=1.0 bar can be calculated according to the following equation: Q=K<sub>vs</sub>×36.22, expressed in m<sup>3</sup>/h
<sup>4</sup>) The female connector is not included in the delivery (see "Spare parts and accessories")
<sup>5</sup>) The maximum permissible ambient temperature of the solenoid valve depends on the permissible ambient temperature of the components, the type of protection and the temperature class
<sup>6</sup>) Safety Integrity Level SIL 4 according to IEC 61508 (Report No. V 60 2004 T1)
<sup>7</sup>) Safety function for use on control valves according to DIN 3394 Part 1, DIN EN 161, DIN 32725, DIN EN 264 and DIN 32730 (Report No. S 284 2007 E1)

# Spare parts and accessories

| Spare parts for | pr Type 3963 Solenoid Valves                                                                                      |
|-----------------|-------------------------------------------------------------------------------------------------------------------|
| Order no.       | Designation                                                                                                       |
| 0430-2287       | Flat gasket made of silicone rubber, -45 to +80 °C (for connection plate)                                         |
| 8502-1091       | Molded gasket (for air supply on booster valve with K <sub>vs</sub> 1.4)                                          |
| 0520-0620       | Diaphragm made of chloroprene, -20 to +80 °C (for booster valve with K <sub>vs</sub> 2.0 or 4.3)                  |
| 0520-0622       | Diaphragm made of chloroprene, -20 to +80 °C (for all booster valves, except with K <sub>vs</sub> 2.0 or 4.3)     |
| 0520-1097       | Diaphragm made of silicone rubber, –45 to +80 °C (for booster valve with K <sub>vs</sub> 2.0 or 4.3)              |
| 0520-1128       | Diaphragm made of silicone rubber, –45 to +80 °C (for all booster valves, except with K <sub>vs</sub> 2.0 or 4.3) |
| 1180-8311       | Actuating element insert, $-20$ to $+80$ °C (for booster valve with K <sub>vs</sub> 2.0 or 4.3)                   |
| 1180-8553       | Actuating element insert, $-45$ to $+80$ °C (for booster valve with K <sub>vs</sub> 2.0 or 4.3)                   |
| 8421-0021       | O-ring 2×1 (for connection plate)                                                                                 |
| 8421-0308       | O-ring 11 × 4.5 (for booster valves with NAMUR interface)                                                         |
| 8421-9002       | O-ring 16 × 2 (for booster valves with NAMUR interface)                                                           |
| 8421-0085       | O-ring $26 \times 2$ , $-20 \dots + 80$ °C (for booster value with K <sub>vs</sub> 2.0 or 4.3)                    |
| 8421-0418       | O-ring $26 \times 2$ , $-45 \dots +80$ °C (for booster value with K <sub>vs</sub> 2.0 or 4.3)                     |
| 8421-0102       | O-ring $36 \times 2$ , $-20 \dots + 80 ^{\circ}$ C (for booster value with K <sub>vs</sub> 2.0 or 4.3)            |
| 8421-0101       | O-ring $36 \times 2$ , $-45 \dots + 80 ^{\circ}$ C (for booster value with K <sub>vs</sub> 2.0 or 4.3)            |
|                 | Enclosure cover without filter (for pilot valve)                                                                  |
| 1099-0673       | without manual override                                                                                           |
| 1099-0674       | with pushbutton switch, screwdriver-actuated, accessible from outside                                             |
| 1099-0675       | with pushbutton, pin-actuated, accessible from outside                                                            |
| 1099-1194       | with lever switch, accessible from outside                                                                        |
| 0070-0799       | Plug G <sup>1</sup> / <sub>4</sub> made of stainless steel 1.4571 (for connection 9 on the pilot valve)           |
| 8421-0070       | O-ring $14 \times 1.5$ made of NBR (for plug G $\frac{1}{4}$ )                                                    |

# Accessories for Type 3963 Solenoid Valves

| Order no. | Designation                                                                                                                |
|-----------|----------------------------------------------------------------------------------------------------------------------------|
| 0790-6658 | Female connector according to EN 175301-803, type A, made of polyamide, black, IP 65                                       |
| 1400-8298 | Female connector (manufactured by Harting), 7 poles, made of aluminum, silvery gray, IP 65                                 |
| 8801-2810 | Sensor connecting cable, 2 wires, length 3 m, blue, with angle connector M 12 × 1, 4 poles, IP 68                          |
| 8831-0716 | Female connector (manufactured by Binder), 7 poles, made of PBT GV, black, IP 67                                           |
| 8831-0865 | Female connector M 12 $\times$ 1, 4 poles, angle type, made of polyamide, black, IP 67                                     |
| 3994-0158 | Cable break protection device with enclosure for top hat rail 35, IP 20 (for Type 3963-X1 with 6 V DC solenoid)            |
| 1400-5268 | Filter made of polyethylene, connection G 1/G $\frac{1}{2}$ , IP 54 (required for actuator size > 1 400 cm <sup>2</sup> !) |
| 8504-0066 | Filter made of polyethylene, connection G 1/4, IP 54                                                                       |
| 8504-0068 | Filter made of polyethylene, connection G $1/_2$ , IP 54                                                                   |
| 1790-7408 | Filter check valve with screw-in case G <sup>1</sup> / <sub>4</sub> , made of polyamide, IP 65                             |
| 1790-7253 | Filter check valve with screw-in case G $\frac{1}{4}$ , made of stainless steel 1.4571, IP 65                              |
| 1790-9645 | Filter check valve with screw-in case G $\frac{1}{4}$ , made of polyamide, NEMA 4                                          |
| 1790-9646 | Filter check valve with screw-in case G $\frac{1}{4}$ , made of stainless steel 1.4571, NEMA 4                             |
| 1400-5930 | Mounting base for G profile 32 according to EN 50035 (2 pieces are required!)                                              |
| 1400-5931 | Mounting base for top hat rail 35 according to EN 50022 (2 pieces are required!)                                           |
| 1400-6726 | Mounting plate for wall mounting                                                                                           |

| Connection b | locks and accessories for attaching solenoid valves to Type 3277 Linear Actuators                                                  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------|
| Order no.    | Designation                                                                                                                        |
| 1400-8813    | Connection block for Type 3277 Linear Actuators with integral Type $3766/3767/3780/3730$ Positioner attachment Connection G $1/_4$ |
| 1400-8814    | Connection <sup>1</sup> / <sub>4</sub> NPT                                                                                         |
| 1400-6950    | Pressure gauge build-on block, 1 × "Output" and 1 × "Supply", made of stainless steel/brass (for connection block)                 |
|              | Piping kit for "Stem retracts"                                                                                                     |
| 1400-6444    | Actuator size 240 cm <sup>2</sup> , made of steel, galvanised                                                                      |
| 1400-6445    | Actuator size 240 cm <sup>2</sup> , made of stainless steel                                                                        |
| 1400-6446    | Actuator size 350 cm <sup>2</sup> , made of steel, galvanised                                                                      |
| 1400-6447    | Actuator size 350 cm <sup>2</sup> , made of stainless steel                                                                        |
| 1400-6448    | Actuator size 700 cm <sup>2</sup> , made of steel, galvanised                                                                      |
| 1400-6449    | Actuator size 700 cm <sup>2</sup> , made of stainless steel                                                                        |

# Spare parts and accessories (continued from page 24)

| Order no.              | Designation                                                                                                                                                                                                                |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1400-6759              | Mounting kit for linear actuators (actuator size $80/240 \text{ cm}^2$ , connection G $\frac{1}{4}$ )                                                                                                                      |
|                        | with screwed pipe connection, connection G 1/4/G 1/4, made of stainless steel                                                                                                                                              |
|                        | Mounting kit for linear actuators (actuator size 350/700 cm <sup>2</sup> , connection G <sup>3</sup> / <sub>8</sub> )                                                                                                      |
| 1400-6735              | with screwed pipe connection, connection G 1/2/G 3/8, made of stainless steel                                                                                                                                              |
| 1400-6761              | with screwed pipe connection, connection G 1/4/G 3/8, made of stainless steel                                                                                                                                              |
| 1400-6736              | Mounting kit for linear actuators (actuator size 1 400 cm <sup>2</sup> , connection G $\frac{3}{4}$ )                                                                                                                      |
|                        | with screwed pipe connection, connection G 1/2/G 3/4, made of stainless steel                                                                                                                                              |
| 1400-6737              | Mounting kit for linear actuators (actuator size 2800 cm <sup>2</sup> , connection G 1)                                                                                                                                    |
|                        | with screwed pipe connection, connection G $\frac{1}{2}$ /G 1, made of stainless steel                                                                                                                                     |
|                        | Mounting kit for linear actuators (actuator size $80/240 \text{ cm}^2$ , connection G $\frac{1}{4}$ )                                                                                                                      |
|                        | with angle bracket made of stainless steel                                                                                                                                                                                 |
| 1400-6749              | and screwed joints for pipe $8 \times 1$ , connection G $\frac{1}{4}/G \frac{1}{4}$ , made of steel, galvanised                                                                                                            |
| 1400-6750              | and screwed joints for pipe $8 \times 1$ , connection G $\frac{1}{4}$ /G $\frac{1}{4}$ , made of stainless steel                                                                                                           |
|                        | Mounting kit for linear actuators (actuator size 350/700 cm <sup>2</sup> , connection G <sup>3</sup> / <sub>8</sub> )                                                                                                      |
|                        | with angle bracket made of stainless steel                                                                                                                                                                                 |
| 1400-6738              | and screwed joints for pipe $8 \times 1$ , connection G $\frac{1}{4}/G \frac{3}{8}$ , made of steel, galvanised                                                                                                            |
| 1400-6739<br>1400-6743 | and screwed joints for pipe $8 \times 1$ , connection G $\frac{1}{4}/G \frac{3}{8}$ , made of stainless steel                                                                                                              |
| 1400-6743              | and screwed joints for pipe $12 \times 1$ , connection G $\frac{1}{4}/G \frac{3}{8}$ , made of stainless steel<br>and screwed joints for pipe $10 \times 1$ , connection G $\frac{1}{2}/G \frac{3}{8}$ , made of polyamide |
| 1400-6745              | and screwed joints for pipe $10 \times 1$ , connection G $\frac{1}{4}$ /G $\frac{3}{8}$ , made of polyamide                                                                                                                |
|                        |                                                                                                                                                                                                                            |
|                        | Mounting kit for linear actuators (actuator size 700 cm <sup>2</sup> , connection G $\frac{3}{8}$ )                                                                                                                        |
|                        | with angle bracket made of stainless steel                                                                                                                                                                                 |
| 1400-6740              | and screwed joints for pipe 12×1, connection G $\frac{1}{2}$ /G $\frac{3}{8}$ , made of steel, galvanised                                                                                                                  |
| 1400-6741              | and screwed joints for pipe 12×1, connection G $\frac{1}{4}/G \frac{3}{8}$ , made of steel, galvanised                                                                                                                     |
| 1400-6742              | and screwed joints for pipe 12 $\times$ 1, connection G $^{1}/_{2}$ /G $^{3}/_{8}$ , made of stainless steel                                                                                                               |

Mounting kits for Type 3963 Solenoid Valves with NAMUR interface

| Order no.                           | Designation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1400-6746<br>1400-6747<br>1400-6748 | Mounting kit for linear actuators (actuator size 350/700 cm <sup>2</sup> , connection G $\frac{3}{8}$ ) with NAMUR rib<br>via adapter plate NAMUR rib/NAMUR interface (order no. 1400-6751)<br>with screwed joints for pipe 12×1, connection G $\frac{1}{4}/G$ $\frac{3}{8}$ , made of steel, galvanised<br>with screwed joints for pipe 12×1, connection G $\frac{1}{4}/G$ $\frac{3}{8}$ , made of stainless steel<br>with screwed joints for pipe 10×1, connection G $\frac{1}{4}/G$ $\frac{3}{8}$ , made of polyamide                       |
| 1400-6752<br>1400-6753<br>1400-6756 | Mounting kit for linear actuators (actuator size 80/240 cm <sup>2</sup> , connection G $^{1}/_{4}$ ) with NAMUR rib<br>via adapter plate NAMUR rib/NAMUR interface (order no. 1400-6751)<br>with screwed joints for pipe 6 × 1, connection G $^{1}/_{4}/G$ $^{1}/_{4}$ , made of steel, galvanised<br>with screwed joints for pipe 6 × 1, connection G $^{1}/_{4}/G$ $^{1}/_{4}$ , made of stainless steel<br>with screwed joints for hose 10 × 1, connection G $^{1}/_{4}/G$ $^{1}/_{4}$ , made of polyamide                                  |
| 1400-6754<br>1400-6755<br>1400-6757 | Mounting kit for linear actuators (actuator size 350/700 cm <sup>2</sup> , connection G $\frac{3}{8}$ ) with NAMUR rib<br>via adapter plate NAMUR rib/NAMUR interface (order no. 1400-6751)<br>with screwed joints for pipe $8 \times 1$ , connection G $\frac{1}{4}/G \frac{3}{8}$ , made of steel, galvanised<br>with screwed joints for pipe $8 \times 1$ , connection G $\frac{1}{4}/G \frac{3}{8}$ , made of stainless steel<br>with screwed joints for pipe $10 \times 1$ , connection G $\frac{1}{4}/G \frac{3}{8}$ , made of polyamide |
| 1400-6759                           | Mounting kit for linear actuators (actuator size $80/240 \text{ cm}^2$ , connection G $\frac{1}{4}$ ) with screwed pipe connection G $\frac{1}{4}/G \frac{1}{4}$ , made of stainless steel                                                                                                                                                                                                                                                                                                                                                     |
| 1400-3001                           | Mounting kit for Type 3353 Angle Seat Valve<br>with adapter plate for NAMUR interface made of stainless steel 1.4301                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Accessories for mounting kits |                                                                                                                                                            |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Order no.                     | Designation                                                                                                                                                |  |
| 0320-1416                     | Bracket for NAMUR rib<br>(required when a positioner or a limit switch is to be mounted to linear actuators with nominal size < DN 50 at the<br>same time) |  |
| 8320-0131                     | Hexagon socket head screw M 8×60 – A 4 DIN 931                                                                                                             |  |
| 1400-6751                     | Adapter plate NAMUR rib/NAMUR interface                                                                                                                    |  |

(Specifications subject to change without notice.)

# SAMSOMATIC GMBH

Weismüllerstraße 20–22 60314 Frankfurt am Main · Germany

Phone: +49 69 4009-0 Fax: +49 69 4009-1644 E-mail: samsomatic@samson.de Internet: http://www.samsomatic.de 2007-10 · T 3963 EN